Skip to main content
Log in

Physicochemical study of the hubnerite-ferberite (MnWO4-FeWO4) zonal distribution in wolframite (Mn X Fe(1−X)WO4) deposits

Application to the Borralha mine (Portugal)

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A thermochemical approach to the problem of zonal structure in metallogenetics involving the use of Ellingham diagrams and minimization of free energy (ΔG) agrees closely with the “normal” zonal structure as defined by Fersman (1934). This approach is applied to the hubnerite-ferberite (MnWO4-FeWO4) solid solution in order to elucidate the repartition law of the Mn/Fe ratio in wolframite (Mn X Fe(1−X)WO4). The study requires experimental determination of thermodynamical data, such as enthalpy ΔH of the solid solution, which is obtained using a high-temperature calorimetric method developed for this purpose. The calculation leads to an equation which gives the Mn molar value of wolframite with respect to temperature and the Mn/Fe ratio of the mineralizing solution. It is theoretically demonstrated that a high manganese content in wolframite is connected with high deposition temperature, but the decrease of the Mn/Fe ratio is a consequence of the decrease of the Mn/Fe ratio in the mineralizing solution, as can be observed in the Borralha deposit from which the geochemical study has been made. Conversely, a rapid lowering of the temperature of deposition leads to an increase of the Mn/Fe ratio in wolframite. Consequently, this ratio cannot be used as a geologic thermometer, but rather as an indicator of the position of the source of the mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amossé, J.: Principe d'une étude thermodynamique de la répartition zonale des minéraux dans les gisements métallifères. C. R. Acad. Sci. 275, 637–639 (1972)

    Google Scholar 

  • Amossé, J.: Détermination experimentale de la pression et de la température de formation d'un filon quartzeux wolframifère. Approche théorique. Bull. Soc. Franc. Minéral. Crist. 99, 121–127 (1976)

    Google Scholar 

  • Amossé, J., Mathieu, J.C.: Calorimétrie de dissolution en sels fondus. Mise au point de la méthode et détermination de l'enthalpie de formation de NiWO4 à partir de WO3 et NiO. C. R. Acad. Sci. 279, 871–873 (1974)

    Google Scholar 

  • Barabanov, V.F.: Geochemistry of tungsten: Int. Geol. Rev. 13, 332–344 (1971)

    Google Scholar 

  • Barin, I., Knacke, O.: Thermochemical properties of inorganic substances. Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  • Edwards, A.B., Lyon, P.J.: Mineralization at Aberfoyle Tin Mine, Rossarden, Tasmania. Proc. Aust. Inst. Min. Met. 181, 93–145 (1957)

    Google Scholar 

  • Emmons, W.H.: Primary downward changes in ores deposits. Am. Inst. Min. Eng. Trans. 70, 964–997 (1924)

    Google Scholar 

  • Fersman, A.E.: Geochemistry. Leningrad 1934

  • Garrels, R.M., Christ, C.L.: Equilibre des minéraux et de leurs solutions aqueuses. Paris: Gauthier-Villars 1967

    Google Scholar 

  • Groves, D.I., Baker, W.E.: The regional variation in compositions of wolframites from Tasmania. Econ. Geol. 67, 362–368 (1972)

    Google Scholar 

  • Helgeson, H.C.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804 (1969)

    Google Scholar 

  • Kubachewski, O., Evans, E.LL., Alcock, C.B.: Metallurgical thermochemistry 4th ed. London: Pergamon Press 1967

    Google Scholar 

  • Leutwein, F.: Die Wolframitgruppe, mineralogisch-lagerstättenkundliche Untersuchungen. Freiberger Forshungsh. C.3, 8–19 (1952)

    Google Scholar 

  • Mathieu, J.C., Durand, F., Bonnier, E.: Emploi d'un calorimètre sous vide pour la mesure des chaleurs de dissolution de Ge, Al, et Ag dans Sn à 700°C, mesure des enthalpies de Sn, ZrB2, TiB2, BN et B4C. Thermodynamics 1, I, AEA, Vienne, 75–88 (1966)

  • McIntire, W.L.: Trace element partition coefficients — a review of theory and applications to geology. Geochim. Cosmochim. Acta 27, 1209–1264 (1963)

    Google Scholar 

  • Mendes, F.: Contribution à l'étude géochronologique par la méthode au strontium de formations cristallines du Portugal. Bol. Museu e Geol. Fac. Cienças Univ. Lisboa 11, 3–157 (1968)

    Google Scholar 

  • Noronha, F.: Contribution à l'étude de l'environnement géologique du gisement de Borralha (Nord du Portugal). Diplôme d'Etudes Approfondies de Géologie Appliquée. Univ. Nancy I, 1972

  • Oelsner, O.W.: Die pegmatitischen, pneumatolytischen Lagerstätten des Erzgebirges. Freiberger Forshungsh. C.4, 3–80 (1952)

    Google Scholar 

  • Routhier, P.: Les gisements métallifères Paris: Masson 1963

    Google Scholar 

  • Schröcke, H.: Isomorphiebeziehungen in der Wolframitgruppe. Beitr. Mineral. Petrog. 7, 166–206 (1960)

    Google Scholar 

  • Schröcke, H.: Über Festkörpergleichgewichte im system Fe-Mn-W-O. N. Jb. Mineral. Abh. 110, 115–127 (1969)

    Google Scholar 

  • Takla, M.A.: Electron microprobe of zoned wolframite from Elba, Egypt. N. Jb. Mineral. Mh. H. 11, 477–524 (1976)

    Google Scholar 

  • Taylor, R.G., Hosking, K.F.G.: Manganese-iron ratios in wolframite, South Crofty Mine, Cornwall. Econ. Geol. 65, 47–63 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amossé, J. Physicochemical study of the hubnerite-ferberite (MnWO4-FeWO4) zonal distribution in wolframite (Mn X Fe(1−X)WO4) deposits. Phys Chem Minerals 3, 331–341 (1978). https://doi.org/10.1007/BF00311846

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311846

Keywords

Navigation