Skip to main content
Log in

The composition, structure, and stability of guinier-preston zones in lunar and terrestrial orthopyroxene

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Lunar and terrestrial orthopyroxenes (Mg,Fe,Ca)2Si2O6 contain varying abundances of coherent, Ca-enriched Guinier-Preston (G.P.) zones. G.P. zones 5–6 unit cells thick have been found in one lunar sample whereas all other examples (lunar and terrestrial) are only one unit-cell-thick. Electron diffraction maxima from the larger lunar G.P. zones indicate that d 100=18.52 Å whereas, d 100=18.2 Å for the host. This increase in the a direction corresponds to an increase in calcium content in the G.P. zones over that of the host of ∼25 mol% Ca2Si2O6. Diffraction patterns of the hk0 net from an area containing G.P. zones show extra spots (h=2n+1) not observed in the host orthopyroxene (Pbca), that violate the a-glide of the host. The G.P. zones, therefore, have space group Pbc21 if it is assumed that the c-glide of pyroxene is retained and the space group of the G.P. zone is a subgroup of Pbca. The loss of the a-glide in the G.P. zones results in 4 distinct silica chains and 4 distinct cation sites M1A, M1B, M2A, M2B; by symmetry, equivalent M2A or M2B sites are clustered together in only one-half of the unit cell. As one-fourth of the divalent cations in the G.P. zones are calcium, ordering of Ca on M2A or M2B would produce a zone 9 Å thick extended parallel to (100) with the composition of Ca(Mg,Fe)Si2O6, but constrained by the host to the structure of orthopyroxene. This zone and the Ca-poor half-unit-cell then constitute an 18 Å thick G.P. zone.

Heating experiments of varying duration indicate that the zones become unstable with respect to the host orthopyroxene at ∼950°C for Wo0.6 and ∼1,050°C for Wo2.5. The zones are interpreted in terms of the pyroxene subsolidus as a metastable phase having either a solvus relationship with orthopyroxene or originating as a distinct phase. The size, distribution, composition and structure of G.P. zones may be an important indicator of the low-temperature thermal history of orthopyroxene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Br∅gger, W.C., Reusch, H.H.: Vorkommen des apatit in Norwegen. Z. Dtsch. Geol. Ges. XXVII, 646–702 (1875)

    Google Scholar 

  • Champness, P.E., Lorimer, G.W.: A direct lattice-resolution study of precipitation (exsolution) in orthopyroxene. Philos. Mag. 30, 357–365 (1974)

    Google Scholar 

  • Dymek, R.F., Albee, A.L., Chodos, A.A.: Comparative petrology of lunar cumulate rocks of possible primary origin: Dunite 72415, troctolite 76535, norite 78235, and anorthosite 62237. Proc. Lunar Sci. Conf. 6th. Geochim. Cosmochim. Acta [Suppl.] 6, 301–341 (1975)

    Google Scholar 

  • Gooley, R., Brett, R., Warner, J., Smyth, J.R.: A lunar rock of deep crustal origin: Sample 76535. Geochim. Cosmochim. Acta 38, 1329–1339 (1974)

    Google Scholar 

  • Guinier, A.: Structure of age-hardened aluminum-copper alloys. Nature 142, 569–570 (1938)

    Google Scholar 

  • Harlow, G.E., Nehru, C.E., Prinz, M., Taylor, G.J., Keil, K.: Pyroxenes in Serra de Mage: cooling history in comparison with Moama and Moore County. Earth Planet. Sci. Lett. 43, 173–181 (1979)

    Google Scholar 

  • Hirsh, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J.: Electron Microscopy of Thin Crystals. London: Butterworths, 1965, p. 549

    Google Scholar 

  • Huebner, J.S.: Experimental control of wüstite activity and mole fraction. Geol. Soc. Am. Abstr. 5, 676 (1973)

    Google Scholar 

  • Huebner, J.S., Turnock, A.C.: The melting relations at 1 bar pressure of of pyroxene composed largely of the components Mg2Si2O6-CaMgSi2O6-CaFeSi2O6-Fe2Si2O6. Am. Mineral. 65, 225–271 (1980)

    Google Scholar 

  • Lorimer, G.W., Champness, P.E.: Combined electron microscopy and analysis of an orthopyroxene. Am. Mineral. 58, 243–248 (1973)

    Google Scholar 

  • Lorimer, G.W., Nicholson, R.B.: The nucleation of precipitates in aluminum alloys. In: The Mechanism of Phase Transformations in Crystalline Solids: London: Inst. of Metals, pp. 36–42 (1970)

    Google Scholar 

  • Matsumoto, T.: Possible structure types derived from Pbca-orthopyroxene. Mineral. J. (Japan) 7, 374–383 (1974)

    Google Scholar 

  • Misra, K.C., Keller, F.B.: Ultramafic bodies in the Southern Appalachians. Am. J. Sci. 278, 389–418 (1978)

    Google Scholar 

  • Morton, R.D.: The Ødegarten phosphate deposits. In: Mineral Occurrences in Southern Norway, Neumann, H. (ed.). Guide to Excursions A15 and C12, International Geol. Cong. XXI 1960, pp. 13–16.

  • Nicholson, R.B., Nutting, J.: Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy- Philos. Mag. 3, 531–553 (1968)

    Google Scholar 

  • Nord, G.L. Jr.: 76535: Thermal history inferred from pyroxene precipitation in anorthite. Proc. Lunar Sci. Conf. 7th. Geochim. Cosmochim. Acta [Suppl.] 7, 1875–1888 (1976)

    Google Scholar 

  • Nord, G.L. Jr.: The composition and structure of Guinier-Preston zones in lunar orthopyroxene. Electron Microscopy 1, 266–267 (1978)

    Google Scholar 

  • Nord, G.L. Jr., Huebner, J.S., Ross, M.: Structure, composition and significance of G.P. zones in 76535 orthopyroxene. Lunar Sci. VIII. Houston: Lunar Science Institute pp. 732–733 (1977)

    Google Scholar 

  • Nord, G.L. Jr., James, O.B.: Consortium breccia 73255: Thermal and deformational history of bulk breccia and clasts, as determined by electron petrography. Proc. Lunar Sci. Conf. 9th. Geochim. Cosmochim. Acta [Suppl.] 9, 821–839 (1978)

    Google Scholar 

  • Nord, G.L. Jr., Ross, M., Huebner, J.S.: Lunar troctolite 76535: mineralogical investigations. Lunar Sci. VII. Houston: Lunar Science Institute 1976, pp. 628–630

    Google Scholar 

  • Papanastassiou, D.A., Wasserburg, G.J.: Rb-Sr age of troctolite 76535. Proc. Lunar Sci. Conf. 7th. Geochim. Cosmochim. Acta [Suppl.] 7, 2035–2054 (1976)

    Google Scholar 

  • Preston, G.P.: The diffraction of X-rays by age-hardening aluminum copper alloys. Proc. Roy. Soc. Sect. A: 167, 526 (1938)

    Google Scholar 

  • Ross, M., Huebner, J.S.: A pyroxene geothermometer based on composition-temperature relationships of naturally occurring orthopyroxene, pigeonite and augite. In: Extended Abstracts. Pennsylvania State University: Int. Conf. Geothermometry Geobarometry, (1975)

  • Ross, M., Huebner, J.S., Dowty, E.: Delineation of the one atmosphere augite-pigeonite miscibility gap for pyroxenes from lunar basalt 12021. Am. Mineral. 58, 619–635 (1973 a)

    Google Scholar 

  • Ross, M., Huebner, J.S., Hickling, N.: Delineation of the orthopyroxene-pigeonite transition and its bearing on pyroxene phase relations in lunar rocks. Lunar Sci. IV. Houston: Lunar Science Institute 1973 b, pp. 637–639

    Google Scholar 

  • Sasaki, S., Matsumoto, T.: Multiple diffraction in orthopyroxenes. Proc. Jn. Acad. 53, 84–89 (1977)

    Google Scholar 

  • Seitz, E., DeFontaine, D.: Elastic interaction energy calculations for Guinier-Preston zones in Al-Cu and Cu-Be. Acta Met. 26, 1671–1679 (1978)

    Google Scholar 

  • Smyth, J.R.: Low orthopyroxene from a lunar deep crustal rock: a new pyroxene polymorph of space group P21ca. Geophys. Res. Lett. 1, 27–29 (1974)

    Google Scholar 

  • Smyth, J.R.: Intracrystalline cation order in a lunar crustal troctolite. Proc. Lunar Sci. Conf. VI. Geochim. Cosmochim. Acta [Suppl.] 6, 821–832 (1975)

    Google Scholar 

  • Tighe, N.H.: Experimental techniques. In: Electron Microscopy in Mineralogy, Wenk, H.-R. (ed.) Berlin Heidelberg New York: Springer 1976, pp. 143–171

    Google Scholar 

  • Turnock, A.C., Lindlsey, D.H., Grover, J.E.: Synthesis and cell parameters of Ca-Mg-Fe pyroxenes. Am. Mineral. 58, 50–59 (1973)

    Google Scholar 

  • Viswanathan, K.: Unit cell dimensions and ionic substitutions in common clinopyroxenes. Am. Mineral. 51, 429–442 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nord, G.L. The composition, structure, and stability of guinier-preston zones in lunar and terrestrial orthopyroxene. Phys Chem Minerals 6, 109–128 (1980). https://doi.org/10.1007/BF00311049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311049

Keywords

Navigation