Skip to main content
Log in

Elastic properties of polycrystalline minerals: Comparison of theory and experiment

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Literature compressional and shear wave velocities measured versus pressure and temperature on dense, isotropic polycrystals of periclase, corundum, forsterite, fayalite, alpha-quartz, rutile, germania, and cassiterite are compared with the Voigt, Reuss, and Hashin-Shtrikman bounds calculated from single-crystal elastic stiffnesses and their first pressure and temperature derivatives. The Hashin-Shtrikman bounds reduce the separation between the Voigt and Reuss bounds by factors of from 3 to 15. There is very good agreement between the Hashin-Shtrikman bounds and the experimental data when errors in the polycrystal data and in the single-crystal elastic stiffnesses are taken into account. This comparison demonstrates that the Hashin-Shtrikman bounds can be used with considerable confidence in modeling velocities in mineral assemblages, particularly mantle assemblages, and are especially useful in problems where sensitivity of the results to the uncertainties in all the input parameters is of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DL, Bass JD (1986) Transition region of the Earth's upper mantle. Nature 320:321–328

    Google Scholar 

  • Anderson OL, Schreiber E (1965) The pressure derivatives of the sound velocities of polycrystalline magnesia. J Geophys Res 70:5241–5248

    Google Scholar 

  • Bina CR, Wood BJ (1987) Olivine-spinel transitions: Experimental and thermodynamic constraints and implications for the nature of the 400-km discontinuity. J Geophys Res 92:4853–4866

    Google Scholar 

  • Chang E, Graham EK (1975) The elastic constants of cassiterite SnO2 and their pressure and temperature dependence. J Geophys Res 80:2595–2599

    Google Scholar 

  • Chung DH (1971) Elasticity and equations of state of olivines in the Mg2SiO4-Fe2SiO4 system. Geophys J R Astron Soc 25:511–538

    Google Scholar 

  • Chung DH, Simmons G (1968) Pressure and temperature dependence of the isotropic elastic moduli of polycrystalline alumina. J Appl Phys 39:5316–5326

    Google Scholar 

  • Chung DH, Simmons G (1969a) Elastic properties of polycrystalline periclase. J Geophys Res 74:2133–2135

    Google Scholar 

  • Chung DH, Simmons G (1969b) Pressure derivatives of the elastic properties of polycrystalline quartz and rutile. Earth Planet Sci Lett 6:134–138

    Google Scholar 

  • Dziewonski AM, Woodhouse JH (1987) Global images of the Earth's interior. Science 236:37–48

    Google Scholar 

  • Fritz IJ (1974) Pressure and temperature dependence of the elastic properties of rutile (TiO2). J Geophys Res 35:817–826

    Google Scholar 

  • Gieske JH, Barsch GR (1968) Pressure dependence of the elastic constants of single crystalline aluminium oxide. Phys Status Solidi 29:121–131

    Google Scholar 

  • Graham EK, Barsch GR (1969) Elastic constants of single-crystal forsterite as a function of pressure and temperature. J Geophys Res 74:5949–5960

    Google Scholar 

  • Graham EK, Sopkin SM, Resley WE (1982) Elastic properties of fayalite, Fe2SiO4, and the olivine solid solution series. EOS Trans Am Geophys Union 63:1090

    Google Scholar 

  • Hankey RE, Schuele DE (1970) Third-order elastic constants of Al2O3. J Acoust Soc Am 48:190–202

    Google Scholar 

  • Hashin Z (1983) Analysis of composite materials — A survey. J Appl Mech Trans Am Soc Mech Eng 50:481–505

    Google Scholar 

  • Hashin Z, Shtrikman S (1962a) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Google Scholar 

  • Hashin Z, Shtrikman S (1962b) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Google Scholar 

  • Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond A 65:349–354

    Google Scholar 

  • Jackson I (1983) Some geophysical constraints on the chemical composition of the Earth's lower mantle. Earth Planet Sci Lett 62:91–103

    Google Scholar 

  • Jackson I, Niesler H (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center for Academic Publications, Tokyo, pp 99–113

    Google Scholar 

  • Jeanloz R, Thompson AB (1983) Phase transitions and mantle discontinuities. Rev Geophys Space Phys 21:51–74

    Google Scholar 

  • Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74:5961–5972

    Google Scholar 

  • Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Minerals 4:105–113

    Google Scholar 

  • Liebermann RC (1972) Compressional velocities of polycrystalline olivine, spinel, and rutile. Earth Planet Sci Lett 17:263–268

    Google Scholar 

  • Liebermann RC (1973) Elastic properties of polycrystalline SnO2 and GeO2: Comparison with stishovite and rutile data. Phys Earth Planet Inter 7:461–465

    Google Scholar 

  • Manghnani MH (1969) Elastic constants of single-crystal rutile under pressure. J Geophys Res 74:4317–4328

    Google Scholar 

  • McSkimin HJ, Andreatch P, Thurston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25°C and −195.8°C. J Appl Phys 36:1624–1632

    Google Scholar 

  • Meister R, Peselnick L (1966) Variational method of determining effective moduli of polycrystals with tetragonal symmetry. J Appl Phys 37:4121–4125

    Google Scholar 

  • Middya TR, Sarkar A, Sengupta S (1984) Elastic constants of polycrystalline aggregate. Acta Phys Polonica A 66:561–571

    Google Scholar 

  • Middya TR, Basu AN (1986) Self-consistent T-matrix solution for the effective elastic properties of noncubic polycrystals. J Appl Phys 59:2368–2375

    Google Scholar 

  • Mizutani H, Hamano Y, Ida Y, Akimoto S (1970) Compressional-wave velocities of fayalite, Fe2SiO4, spinel, and coesite. J Geophys Res 75:2741–2747

    Google Scholar 

  • Ohno I, Yamamoto S, Anderson OL (1985) Elastic constants of Al2O3 by RPR method: EOS Trans Am Geophys Union 66:370–371

    Google Scholar 

  • Peselnick L, Meister R (1965) Variational methods of determining effective moduli of polycrystals: (A) hexagonal symmetry, (B) trigonal symmetry. J Appl Phys 36:2879–2884

    Google Scholar 

  • Reddy PJ (1963) Variation with temperature of the elastic compliances of corundum. Acta Crystallogr 16:335–337

    Google Scholar 

  • Schreiber E, Anderson OL (1966a) Temperature dependence of the velocity derivatives of periclase. J Geophys Res 71:3007–3012

    Google Scholar 

  • Schreiber E, Anderson OL (1966b) Pressure derivatives of the sound velocities of polycrystalline alumina. J Am Ceram Soc 49:184–190

    Google Scholar 

  • Schreiber E, Anderson OL (1968) Revised data on polycrystalline magnesium oxide. J Geophys Res 73:2837–2838

    Google Scholar 

  • Soga N, Anderson OL (1966) High temperature elastic properties of polycrystalline MgO and Al2O3. J Am Ceram Soc 49:355–359

    Google Scholar 

  • Spetzler H (1970) Equation of state of polycrystalline and single-crystal MgO to 8 kilobars and 800 °K. J Geophys Res 75:2073–2087

    Google Scholar 

  • Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4, and Co2SiO4 and the elastic properties of olivine group minerals at high temperature. J Phys Earth 27:209–238

    Google Scholar 

  • Sumino Y, Anderson OL, Suzuki I (1983) Temperature coefficients of elastic constants of single crystal MgO between 80 and 1300 K. Phys Chem Minerals 9:38–47

    Google Scholar 

  • Sumino Y, Nishizawa O, Goto T, Ohno I, Ozima M (1977) Temperature variation of elastic constants of single-crystal forsterite between −190° and 400°C. J Phys Earth 25:377–392

    Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine, and their anharmonic properties. J Phys Earth 23:145–159

    Google Scholar 

  • Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of single-crystal forsterite Mg2SiO4 up to 1200 K. Phys Chem Minerals 10:38–46

    Google Scholar 

  • Suzuki I, Seya K, Takei H, Sumino Y (1981) Thermal expansion of fayalite, Fe2SiO4. Phys Chem Minerals 7:60–63

    Google Scholar 

  • Tefft WE (1966) Elastic constants of synthetic single crystal corundum. J Res Nat Bur Stand 70A:277–280

    Google Scholar 

  • Thomsen LJ (1972) Elasticity of polycrystals and rocks. J Geophys Res 77:315–327

    Google Scholar 

  • Wachtman JB, Tefft WE, Lam D, Stinchfield RP (1960) Elastic constants of synthetic single crystal corundum at room temperature. J Res Nat Bur Stand 64A:213–228

    Google Scholar 

  • Wachtman JB, Scuderi TG, Cleek GW (1962) Linear thermal expansion of aluminium oxide from 100° to 1100°K. J Am Ceram Soc 45:319–323

    Google Scholar 

  • Walpole LJ (1981) Elastic behaviour of composite materials: Theoretical foundations. In: Yih CS (ed) Advances in applied mechanics, vol 21. Academic Press, New York, pp 169–242

    Google Scholar 

  • Wang H, Simmons G (1973) Elasticity of some mantle crystal structures, 2. Rutile, GeO2. J Geophys Res 78:1262–1273

    Google Scholar 

  • Watt JP (1979) Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry. J Appl Phys 50:6290–6295

    Google Scholar 

  • Watt JP (1980) Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J Appl Phys 51:1520–1524

    Google Scholar 

  • Watt JP (1986) Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with trigonal (3,\(\bar 3\) and tetragonal (4,\(\bar 4\),4m) symmetry. J Appl Phys 60:3120–3124

    Google Scholar 

  • Watt JP (1987) POLYXSTAL: A FORTRAN program to calculate average elastic properties of minerals from single-crystal elasticity data. Comput Geoscience 13:441–462

    Google Scholar 

  • Watt JP, O'Connell RJ (1978) Mixed-oxide and perovskite-structure model mantles from 700–1200 km. Geophys J Roy Astr Soc 65:601–630

    Google Scholar 

  • Watt JP, Peselnick L (1980) Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetry. J Appl Phys 51:1525–1531

    Google Scholar 

  • Watt JP, Ahrens TJ (1982) The role of iron partitioning in mantle composition, evolution, and scale of convection. J Geophys Res 87:5631–5644

    Google Scholar 

  • Watt JP, Davies GF, O'Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14:541–563

    Google Scholar 

  • Webb SL, Jackson I (1985) The anomalous pressure dependence of the elastic moduli for single-crystal orthopyroxene. EOS Trans Am Geophys Union 66:371

    Google Scholar 

  • Weidner DJ, Bass JD, Ringwood AE, Sinclair W (1982) The single-crystal elastic moduli of stishovite. J Geophys Res 87:4740–4746

    Google Scholar 

  • Willis JR (1981) Variational and related methods for the overall properties of composites. In: Yih CS (ed) Advances in applied mechanics, vol 21. Academic Press, New York, pp 1–78

    Google Scholar 

  • Yoon HS, Newnham RE (1973) The elastic properties of beryl. Acta Crystallogr A 29:507–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, J.P. Elastic properties of polycrystalline minerals: Comparison of theory and experiment. Phys Chem Minerals 15, 579–587 (1988). https://doi.org/10.1007/BF00311029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311029

Keywords

Navigation