Skip to main content
Log in

Inactivation of a single type-2A phosphoprotein phosphatase is lethal in Neurospora crassa

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A PCR approach, employing the use of degenerate oligonucleotide mixtures, was used to isolate pph-1, a type-2A protein phosphatase (catalytic subunit)-encoding gene, from Neurospora crassa. The isolated single-copy gene is 1327 nucleotides in length, contains four putative introns and encodes a 310 amino-acid polypeptide. pph-1 is located between pdx-1 and col-4 on the right arm of N. crassa linkage group IV. pph-1 transcript levels are highest during the first hours of conidial germination. Failure to obtain viable progeny in which pph-1 had been inactivated via the repeat-induced point (RIP) mutation process, and evidence that nuclei harboring a disrupted pph-1 gene could only be maintained in a hererokaryon, indicated that a functional pph-1 gene is essential for fungal growth. This is the first report providing evidence that inactivation of a single type-2A protein phosphatase gene results in a lethal phenotype in fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arino J, Wai Woon C, Brautigan DL, Miller TB, Johnson GL (1988) Human liver phosphatase 2A: cDNA and amino-acid sequence of two catalytic subunit isotypes. Proc Natl Acad Sci USA 85:4252–4256

    Google Scholar 

  • Arino J, Perez-Callejon E, Cunillera N, Camps M, Posas F, Ferrer A (1993) Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Mol Biol 21:475–485

    Google Scholar 

  • Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J 256:283–290

    Google Scholar 

  • Bruchez JJP, Eberle J, Russo VEA (1993) Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, introns, poly(A) tail formation sequences. Fungal Genet Newslett 40:89–96

    Google Scholar 

  • Cairns J, Qin S, Philp R, Tan YH, Guy GR (1994) Dephosphorylation of the small heat-shock protein Hsp27 in vivo by protein phosphatase 2A. J Biol Chem 269:9176–9183

    Google Scholar 

  • Chen J, Martin BL, Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science 257:1261–1264

    Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508

    Google Scholar 

  • Cohen PTW, Cohen P (1989) Discovery of a protein phosphatase activity encoded in the genome of bacteriophage λ. Biochem J 260:931–934

    Google Scholar 

  • Cohen P, Holmes CFB, Tsukitani Y (1990a) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102

    Google Scholar 

  • Cohen PTW, Brewis ND, Hughes V, Mann DJ (1990b) Protein serine/threonine phosphatases: an expanding family. FEBS Lett 268:355–359

    Google Scholar 

  • Cormier P, Osborne HB, Bassez T, Poulhe R, Belle R, Mulner-Lorillon O (1991) Protein phosphatase 2A from Xenopus oocytes, characterization during meiotic cell division. FEBS Lett 295:185–188

    Google Scholar 

  • Davis RH, de Serres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 17A:79–143

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Doonan JH, Morris NR (1989) The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homologue of mammalian phosphoprotein phosphatases. Cell 57:987–996

    Google Scholar 

  • Fincham JRS (1989) Transformation in fungi. Microbiol Rev 53:148–170

    Google Scholar 

  • Haystead TAJ, Sim ATR, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effect of the tumour promoter okadic on intracellular protein phosphorylation and metabolism. Nature 337:78–81

    Google Scholar 

  • Healy AM, Zolnierowicz A, Stapelton E, Goebel M, dePaoli-Roach AA, Pringle JR (1991) CDC55 a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type-2A protein phosphatase. Mol Cell Biol 11:5767–5780

    Google Scholar 

  • Higuchi S, Tamura J, Giri PR, Polli JW, Kincaid RL (1991) Calmodulin-dependent protein phosphatase from Neurospora crassa, molecular cloning and expression of recombinant catalytic subunit. J Biol Chem 266:18104–18112

    Google Scholar 

  • Honkanen RE (1993) Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases type 1 and 2 A. FEBS Lett 330:283–286

    Google Scholar 

  • Hu G, Ronne H (1994) Overexpression of the yeast PAM1 gene perimits survival without protein phosphatase 2A and induces a filamentous phenotype. J Biol Chem 269:3429–3435

    Google Scholar 

  • Inagaki N, Ito M, Nakano T, Inagaki M (1994) Spatiotemporal distribution of protein kinase and phosphatase activities. Trends Biochem Sci 19:448–452

    Google Scholar 

  • Khew-Goodall Y, Mayer RE, Maurer F, Stone SR, Hemmings BA (1991) Structure and transcriptional regulation of protein phosphatase-2A catalytic subunit genes. Biochemistry 30:89–97

    Google Scholar 

  • Kinoshita N, Ohkura H, Yanagida M (1990) Distinct, essential roles of type-1 and-2A protein phosphatases in the control of the fission-yeast cell-division cycle. Cell 63:405–415

    Google Scholar 

  • Kinoshita N, Yamano H, Niwa H, Yoshida T, Yanagida M (1993) Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev 7:1059–1071

    Google Scholar 

  • Kitagawa Y, Sasaki K, Shima H, Shibuya M, Sugimura T, Nagao M (1990) Protein phosphatases possibility involved in rat spermatogenesis. Biochem Biophys Res Commun 171:230–235

    Google Scholar 

  • Kozak M (1987) An analyses of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Google Scholar 

  • Li Y, Casida JE (1992) Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci USA 89:11867–11870

    Google Scholar 

  • Li Y, MacKintosh C, Casida JE (1993) Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Biochem Pharm 46:1435–1443

    Google Scholar 

  • MacKintosh C, MacKintosh PW (1994) Inhibitors of kinases and phosphatases. Trends Biochem Sci 19:444–448

    Google Scholar 

  • Mayer-Jaekel RE, Hemmings BA (1994) Protein phosphatase 2A —a ‘menage a trois’. Trends Cell Biol 4:287–291

    Google Scholar 

  • Metzenberg RL, Grotelueschen J (1994) Restriction polymorphism maps of Neurospora crassa: update. Fungal Genet Newslett 40:130–138

    Google Scholar 

  • Metzenberg RL, Stevens JN, Selker EU, Morzycka-Wroblewska E (1985) Identification and chromosomal distribution of 5s rRNA genes in Neurospora crassa. Proc Natl Acad Sci USA 82:2067–2071

    Google Scholar 

  • Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73:673–699

    Google Scholar 

  • Orgad S, Brewis ND, Alphey L, Axton JM, Dudai Y, Cohen PTW (1990) The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett 275:44–48

    Google Scholar 

  • Rambosek J, Leach JU (1987) Recombinant DNA in filamentous fungi: progress and prospects. Rev Biotechnol 6:357–393

    Google Scholar 

  • Ronne H, Carlberg M, Hu G, Nehlin JO (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol Cell Biol 11:4876–4884

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Larboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Selker E (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613

    Google Scholar 

  • Shenolikar S (1994) Protein serine/threonine phosphatases — new avenues for cell regulation. Annu Rev Cell Biol 10:55–86

    Google Scholar 

  • Sneddon AA, Cohen PTW, Stark MJR (1990) Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J 9:4339–4346

    Google Scholar 

  • Staben C, Jensen B, Singer M, Pollock J, Schectman M, Kinsey J, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newslett 36:79–81

    Google Scholar 

  • Stone SR, Mayer R, Wernet W, Maurer F, Hofsteenge J, Hemmings BA (1988) The nucleotide sequence of the c-DNA encoding the human lung protein phosphatase 2Aα catalytic subunit. Nucleic Acids Rev 16:11365

    Google Scholar 

  • Sutton A, Immanuel D, Arndt KT (1991) The SIT4 protein phosphatase functions in the late G1 for progression into S phase. Mol Cell Biol 11:2133–2148

    Google Scholar 

  • Szoor B, Feher Z, Bako E, Szabo G, Gergely P, Dombradi V (1994) Isolation and characterization of the catalytic subunit of protein phosphatase 2A from Neurospora crassa. Fungal Genet Newslett 41:82–84

    Google Scholar 

  • Vogel HJ (1956) A convenient growth medium for Neurospora crassa (medium N). Microb Genet Bull 13:42–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. K. Zimmerman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yatzkan, E., Yarden, O. Inactivation of a single type-2A phosphoprotein phosphatase is lethal in Neurospora crassa . Curr Genet 28, 458–466 (1995). https://doi.org/10.1007/BF00310816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310816

Key words

Navigation