Contributions to Mineralogy and Petrology

, Volume 116, Issue 1–2, pp 169–181 | Cite as

Pd-oxide equilibration: a new experimental method for the direct determination of oxide activities in melts and minerals

  • Laurinda Chamberlin
  • John R. Beckett
  • Edward Stolper
Article

Abstract

We have developed a new technique for the experimental determination of the activities of oxide components in melts and minerals using the equilibrium between Pd alloy, oxygen, and the oxide component in the sample of interest. If a melt or mineral sample is equilibrated with Pd metal at fixed P, T, and fO2, a small amount of each constituent oxide will reduce to metal and dissolve into the Pd, forming an alloy. Due to the extraordinary stability of dilute alloys of Pd with Mg, Al, and Si, these metals dissolve into the Pd in amounts easily measured with the electron microprobe at fO2s that can be achieved with conventional gas-mixing techniques. We determined the activity-composition relations for Pd−Mg, −Al, and −Si alloys by equilibrating Pd at fixed fO2and T with periclase, corundum, and cristobalite (aoxide≡1). Because Mg, Al, and Si have constant activity coefficients in Pd at low concentrations, the activity of the oxide of each metal is a simple function of the ratio of the concentration of the metal in Pd in equilibrium with the sample to that in Pd in equilibrium with the pure oxide. Therefore, if Pd plus a melt or mineral and Pd plus pure oxide standards are equilibrated simultaneously at fixed T and fO2, the precision of the analytical technique is the major limitation on the determination of oxide activities. We used Pd-oxide equilibration to explore activities in silicate melts analogous to Type B Ca−Al-rich inclusions (CAIs) from carbonaceous chondrites; the measured activities deviate systematically from model valves but agree to within 1–30%. The activities imply that Type B CAIs did not condense as liquids from a gas of solar composition, and that only very aluminous compositions are potential liquid condensates from the solar nebula. We also used Pd-oxide equilibration to determine the free energy of formation from the oxides, ΔGf/O, of the spinel end-member MgAl2O4 at 1150 to 1400°C to a precision of 2–19% (1∂). Because the technique reflects equilibration at high temperature, the ΔGf/Os accurately represent the mineral with equilibrium Mg−Al disorder at temperature, a feature not true of drop calorimetric results because of partial reordering during quenching. Our results indicate more negative ΔGfEmphasis>/Oand hence higher entropy of formation, ΔSfEmphasis>/O, than given in most compilations of thermodynamic data for spinel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham KP, Davies MW, Richardson FD (1960) Activities of manganese oxide in silicate melts. J Iron Steel Inst London 196: 82–89Google Scholar
  2. Alper AM, McNally RN, Ribbe PH, Doman RC (1962) The system MgO−MgAl2O4. J Am Ceram Soc 45: 263–268Google Scholar
  3. Armstrong JT (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF, and ϕ(p z) procedures. In: Newbury DE (ed) Microbeam analysis 1988. San Francisco Press, San Francisco, pp 239–246Google Scholar
  4. Beckett JR, Spivack AJ, Hutcheon ID, Wasserburg GJ, Stolper EM (1990) Crystal chemical effects on the partitioning of trace elements between mineral and melt: an experimental study of melilite with applications to refractory inclusions from carbonaceous chondrites. Geochim Cosmochim Acta 54: 1755–1774Google Scholar
  5. Berman RG (1983) A thermodynamic model for multicomponent melts with application to the system CaO−MgO−Al2O3−SiO2 (unpublished). PhD thesis, Univ British ColumbiaGoogle Scholar
  6. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O−K2O−CaO−FeO−Fe2O3−Al2O3−SiO2−TiO2−H2O−CO2. J Petrol 29: 445–522Google Scholar
  7. Blander M, Fuchs LM (1975) Calcium-aluminum-rich inclusions in the Allende meteorite: evidence for a liquid origin. Geochim Cosmochim Acta 39: 1605–1619Google Scholar
  8. Brearley AJ, Casanova I, Miller ML, Keil K (1991) Mineralogy and possible origin of an unusual Cr-rich inclusion in the Los Martinez (L6) chondrite. Meteoritics 26: 287–300Google Scholar
  9. Brodowsky H and Husemann H (1966) Wasserstoff in Palladiumlegierungen. Ber Bunsenges Phys Chem 70: 626–630Google Scholar
  10. Brodowsky HA, Schaller HJ (1969) Thermodynamics of nonstoichiometric interstitial alloys. I. Boron in palladium. Trans Metall Soc AIME 245: 1015–1020Google Scholar
  11. Brodowsky H, Oei YS, Schaller HJ (1980) Thermodynamische Eigenschaften von Palladium-Cadmium-Legierungen. Z Metallk 71: 593–598Google Scholar
  12. Chamberlin LA (1994) Pd-oxide equilibration: a new experimental method for the direct determination of the activities of oxide components in melts and minerals (unpublished). PhD thesis, CaltechGoogle Scholar
  13. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) The JANAF thermochemical tables, 3rd edn. J Phys Chem Ref Data 14 Suppl 1Google Scholar
  14. Cima M, Brewer L (1988) The generalized Lewis acid-base titration of palladium and niobium. Metall Trans B 19: 893–917Google Scholar
  15. Dudson PJ, Fraser DG (1980) Nickel oxide activities in silicate melts in the system CaO−MgO−Al2O3−NiO2−NiO. Prog Exp Petrol 5: 247–251Google Scholar
  16. Fegley B, Palme H (1985) Evidence for oxidizing conditions in the solar nebula from Mo and W depletions in refractory inclusions in carbonaceous chondrites. Earth Planet Sci Lett 72: 311–326Google Scholar
  17. Frölich H (1936) Elektronentheorie der Metalle. Julius Springer, BerlinGoogle Scholar
  18. Fulton JC, Chipman J (1954) Slag-metal-graphite reactions and the activity of silica in lime-alumina-silica slags. J Met 200: 1136–1146Google Scholar
  19. Ghiorso MS, Carmichael ISE, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84: 107–145Google Scholar
  20. Grimsey EJ (1988) the effect of temperature on nickel solubility in silica saturated fayalite slags from 1523 to 1623 K. Metall Trans B 19B: 243–247Google Scholar
  21. Grove TL (1988) Use of Fe−Pt alloys to climinate iron loss problom in 1 atmosphere gas mixing experiments: Theoretical and practical considerations. Contrib Mineral Petrol 78: 298–304Google Scholar
  22. Hallstedt B (1992) Thermodynamic assessment of the system MgO−Al2O3. J Am Ceram Soc 75: 1497–1507Google Scholar
  23. Heine V (1969) Electronic structure of metals. In: Ziman JM (ed) The physics of metals. Cambridge University Press, Cambridge, pp 1–61Google Scholar
  24. Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A: 1–229Google Scholar
  25. Holland TBJ, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O−Na2O−CaO−MgO−MnO−FeO−Fe2O3−Al2O3−TiO2−SiO2−C−H2−O2. J Metamorphic Geol 8: 89–124Google Scholar
  26. Kleykamp H, Kang S-G (1991) The constitution of the uranium-palladium and uranium-rhodium-palladium systems. Z Metallk 82: 544–552Google Scholar
  27. Lange RA, De Yoreo JJ, Navrotsky A (1991) Scanning calorimetric measurement of heat capacity during incongruent melting of diopside. Am Mineral 76: 904–912Google Scholar
  28. Langenberg FC, Chipman J (1959) Activity of silica in CaO−Al2O3−SiO2 slags at 1600° and 1700°C. Trans Metall Soc AIME 215: 958–962Google Scholar
  29. Langenberg FC, Kaplan H, Chipman J (1958) The activity of silica in lime-alumina-silica slags at 1600°C. In: Elliot JF (ed) Physical chemistry of steelmaking. John Wiley, New York, pp 65–67Google Scholar
  30. Lejus A (1964) Sur la formation à haute température de spinelles nonstœichiométriques et de phase dérivées dans plusieurs systèmes d'oxydes à base d'alumine et dans le système aluminenitrure d'aluminium. Rev Hautes Tempér Réfract 1: 53–95Google Scholar
  31. Mattioli GS, Wood BJ, Carmichael ISE (1987) Ternary-spinel volumes in the system MgAl2O4−Fe3O4−γFe8/3O4: implications for the effect of P on intrinsic f O 2 measurements of mantlexenolith spinels. Am Mineral 72: 468–480Google Scholar
  32. McAlister AJ (1986) The Al−Pd (aluminum-palladium) system. Bull Alloy Phase Diag 7: 368–374Google Scholar
  33. Millard RL, Peterson RC, Hunter BK (1992) Temperature dependence of cation disorder in MgAl2O4 spinel using 27Al and 17O magic-angle spinning nuclear magnetic resonance spectroscopy. Am Mineral 77: 44–52Google Scholar
  34. Moffatt WG (1982) Handbook of binary phase diagrams. General Electric Company, Schnectady, New YorkGoogle Scholar
  35. Navrotsky A, Wechsler BA, Geisinger K, Seifert F (1986) Thermochemistry of MgAl2O4−Al8/3O4 defect spinels. J Am Ceram Soc 69: 418–422Google Scholar
  36. Navrotsky A, Ziegler D, Oestrike R, Maniar P (1989) Calorimetry of silicate melts at 1773 K: measurement of enthalpies of fusion and of mixing in the systems diopside-anorthite-albite and anorthite-forsterite. Contrib Mineral Petrol 101: 122–130Google Scholar
  37. Nayeb-Hashemi AA, Clark JB (1985) The Mg−Pd (magnesium-palladium) system. Bull Alloy Phase Diag 6: 164–167Google Scholar
  38. Ozturk B, Frueban RJ (1987) Activity of silica in calcium-aluminate based slags. Metall Trans B 18B: 746–749Google Scholar
  39. Peterson RC, Lager GA, Hitterman R (1991) A time-of-flight neutron diffraction study of MgAl2O4 at temperatures up to 1273 K. Am Mineral 76: 1455–1458Google Scholar
  40. Rein RH, Chipman J (1963) The distribution of silicon between Fe−Si−C alloys and SiO2−CaO−MgO−Al2O3 slags. Trans Metall Soc AIME 227: 1193–1203Google Scholar
  41. Rein RH, Chipman J (1965) Activities in the liquid solution SiO2−CaO−MgO−Al2O3 at 1600°C. Trans Metall Soc AIME 233: 415–425Google Scholar
  42. Robie RA, Hemingway BR, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (105 Pascals) pressure and at higher temperatures. USGeol Surv Bull 1452: 1–456Google Scholar
  43. Sahoo P, Reddy RG (1984) Activity coefficient of nickel oxide in FeO−NiO−FeO1.5−AlO1.5−SiO2 at 1573K. In: Fine HA, Gaskell DR (eds) Second International Symposium on Metallurgical Slags and Fluxes. Metallurgical Society of AIME. Warrendale, Pennsylyania, pp 533–545Google Scholar
  44. Sato M (1971) Electrochemical measurements and control of oxygen fugacity and other gaseous species with solid electrolyte sensors. In: Ulmer GC (ed) Research techniques for high pressure and high temperature. Springer, New York Berlin Heidelberg, pp 43–100Google Scholar
  45. Schaller HJ (1976) Aktivitätskoeffizienten von Zirkon in Palladium und Platin. Ber Bunsenges Phys Chem 80: 999–1002Google Scholar
  46. Schaller HJ (1978) Der Einfluß der Lage der Fermi-Energie auf das Mischungsverhalten von Palladium/Aluminium-Legierungen. Ber Bunsenges Phys Chem 82: 365–371Google Scholar
  47. Schaller HJ (1979) Über die extrem hohe thermodynamische Stabilität von Pd−Th-Legierungen. Z Naturforsch 34a: 464–468Google Scholar
  48. Schaller HJ, Brodowsky H (1978a) Thermodynamische Eigenschaften von Palladium-Zinn-Legierungen. Z Metallk 69: 87–93Google Scholar
  49. Schaller HJ, Brodowsky H (1978 b) Thermodynamic properties of palladium-indium alloys. Ber Bunsenges Phys chem 82: 773–778Google Scholar
  50. Schaller HJ, Craig RS, Wallace WE (1972) Magnetic and crystallographic characteristics of solid solutions of Gd in Pd and Pd−Ag alloys. J Solid State Chem 5: 338–341Google Scholar
  51. Sharma RA, Richardson FD (1965) Activities of manganese oxide, sulfide capacities, and activity coefficients in aluminate and silicate melts. Trans Metall Soc AIME 233: 1586–1592Google Scholar
  52. Snyder DA, Carmichael ISE (1992) Olivine-liquid equilibria and the chemical activities of FeO, NiO, Fe2O3, and MgO in natural basic melts. Geochim Cosmochim Acta 56: 303–318Google Scholar
  53. Stolper EM (1982) Crystallization sequences of Ca, Al-rich inclusions from Allende: an experimental study. Geochim Cosmochim Acta 46: 2159–2180Google Scholar
  54. Tsukihashi F, Werme A, Matsumoto F, Kasahara A, Yukinobu M, Hyodo T, Shiomi S, Sano N (1984) Thermodynamics of the soda slag system for hot metal treatment. In: Fine HA, Gaskell DR (eds) Second International Symposium on Metallurgical Slags and Fluxes. American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York, pp 89–106Google Scholar
  55. Wagner RD, Larimer JW (1978) Condensation and stability of oxide/silicate melts. Meteoritics 13: 651Google Scholar
  56. Wark DA (1987) Plagioclase-rich inclusions in carbonaceous meteorites: liquid condensates? Geochim Cosmochim Acta 51: 221–242Google Scholar
  57. Weill DF, Hon R, Navrotsky A (1980) The igneous system CaMgSi2O6−CaAl2SiO8−NaAlSi3O6: variations on a classic theme by Bowen. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, New Jersey, pp 49–92Google Scholar
  58. Wood BJ, Kirkpatrick RJ, Montez B (1986) Order-disorder phenomena in MgAl2O4 spinel. Am Mineral 71: 999–1006Google Scholar
  59. Wood JA, Morfill GE (1988) A review of solar nebula models. In: Kerridge JF and Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 329–347Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Laurinda Chamberlin
    • 1
  • John R. Beckett
    • 1
  • Edward Stolper
    • 1
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations