Histochemie

, Volume 22, Issue 1, pp 1–7

Fluorescence histochemical evidence for axonal growth and secretion from transplanted adrenal medullary tissue

  • Lars Olson
Article

Summary

Small pieces of rat adrenal medulla were homologously transplanted to the anterior chamber of the eye. The eyes were adrenergically denervated. Transplants became attached to and vascularized by the iris of the host eye. Transplants and irides were examined at various times postoperatively with the histochemical fluorescence method of Falck and Hillarp.

It was shown that the adrenal medullary transplants were able to produce catecholamine-containing nerves that partly reinnervated the denervated host iris. The nerves derived at least partly from groups of highly fluorescent cells, similar to the adrenaline and/or noradrenaline cells of the normal adrenal medulla. The cells were thus not similar to sympathetic adrenergic nerve cells.

Intravasal secretion of fluorescent material was observed in one case, indicating that the transplanted medullary tissue was also able to fullfill its normal endocrinological role of releasing hormones to the blood stream.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review on the methodology. J. Histochem. Cytochem.15, 65–78 (1967).Google Scholar
  2. Coupland, R. E., Holmes, R. L.: The distribution of cholinesterase in the adrenal glands of the rat, cat and rabbit. J. Physiol. (Lond.)141, 97–106 (1958).Google Scholar
  3. —, Hopwood, D.: The mechanism of the differential staining reaction for adrenaline- and noradrenaline-storing granules in tissues fixed in glutaraldehyde. J. Anat. (Lond.)100, 227–243 (1966).Google Scholar
  4. —, MacDougall, I. D. B.: Adrenaline formation in noradrenaline-storing chromaffin cellsin vitro induced by corticosterone. J. Endocr.36, 317–324 (1966).Google Scholar
  5. —, Pyper, A. S., Hopwood, D.: A method for differentiating between noradrenaline- and adrenaline-storing cells in the light and electron microscope. Nature (Lond.)201, 1240–1242 (1964).Google Scholar
  6. Elfvin, L. G.: The fine structure of the cell surface of chromaffin cells in the rat adrenal medulla. J. Ultrastruct. Res.12, 263–286 (1965).Google Scholar
  7. —: A new granule-containing nerve cell in the inferior mesenteric ganglion of the rabbit. J. Ultrastruct. Res.22, 37–44 (1968).Google Scholar
  8. Eränkö, O.: Distribution of fluorescing islets, adrenaline and noradrenaline in the adrenal medulla of the hamster. Acta endocr. (Kbh.)18, 174–179 (1955).Google Scholar
  9. —: Specific demonstration of acetylcholinesterase and non-specific cholinesterase in the adrenal gland of the rat. Histochemie1, 257–267 (1959).Google Scholar
  10. Eränkö, O., Härkönen, M.: Monoamine-containing small cells in the superior cervical ganglion of the rat and an organ composed of them. Acta physiol. scand.63, 511–512 (1965).Google Scholar
  11. Falck, B., Hillarp, N.-Ă., Thieme, G., Torp, A.: Fluorescence of catechol amines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).Google Scholar
  12. Hillarp, N.-Ă.: The construction and functional organization of the autonomic innervation apparatus. Acta physiol. scand.46, Suppl. 157, 1–38 (1959).Google Scholar
  13. —, Hökfelt, B.: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta physiol. scand.30, 55–68 (1953).Google Scholar
  14. Lewis, P. R., Shute, C. C. D.: The distribution of cholinesterase in cholinergic neurons demonstrated with the electron microscope. J. Cell Sci.1, 381–390 (1966).Google Scholar
  15. —: An electron-microscopic study of cholinesterase distribution in the rat adrenal medulla. J. Microsc.89, 181–193 (1969).Google Scholar
  16. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand.64, Suppl. 248, 1–93 (1965).Google Scholar
  17. —, Olson, L.: Adrenergic reinnervation of anterior chamber transplants. Acta physiol. scand.71, 401–402 (1967).Google Scholar
  18. —, Sachs, Ch.: Direct studies on the disappearance of the transmitter and the changes in the uptake-storage mechanisms of degenerating nerves. Acta physiol. scand.64, 385–399 (1965).Google Scholar
  19. Matthews, M. R., Raisman, G.: The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat. (Lond.).105, 255–282 (1969).Google Scholar
  20. Moppert, J.: Zur Ultrastruktur der phaeochromen Zellen im Nebennierenmark der Ratte. Z. Zellforsch.74, 32–44 (1966).Google Scholar
  21. Norberg, K.-A.: Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res.5, 125–170 (1967).Google Scholar
  22. —, Hamberger, B.: The sympathetic adrenergic neuron. Some characteristics revealed by histochemical studies on the intraneuronal distribution of the transmitter. Acta physiol. scand.63, Suppl. 238, 1–42 (1964).Google Scholar
  23. —, Ritzén, M., Ungerstedt, U.: Histochemical studies on a special catecholamine-containing cell type in sympathetic ganglia. Acta physiol. scand.67, 260–270 (1966).Google Scholar
  24. Olson, L., Malmfors, T.: Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and3H-NA uptake studies using tissue transplantations to the anterior chamber of the eye. Acta physiol. scand., Suppl. (1970) (in press).Google Scholar
  25. —, Ungerstedt, U.: A simple high capacity freeze-drier for histochemical use. Histochemie22, 8–19 (1970).Google Scholar
  26. Palkama, A.: Distribution of adrenaline, noradrenaline and acid phosphatase, cholinesterases and non-specific esterases in the adrenal medulla of some mammals. Ann. Med. exp. Fenn.40, Suppl. 3, 1–82 (1962).Google Scholar
  27. —: Demonstration of adrenomedullary catecholamines and cholinesterases at electronmicroscopic level in the same tissue section. Ann. Med. exp. Fenn.45, 295–306 (1967).Google Scholar
  28. Rubin, R. P., Cohen, M. S., Harman, S. M., Roer, E. M.: The localization of adrenaline-rich medullary chromaffin cells adjacent to the adrenal cortex. J. Endocr.41, 541–545 (1968).Google Scholar
  29. Siegrist, G., Dolivo, M., Dunant, Y., Foroglou-Kerameus, C., Ribaupierre, F. de., Rouiller, Ch.: Ultrastructure and function of the chromaffin cells in the superior cervical ganglion of the rat. J. Ultrastruct. Res.25, 381–407 (1968).Google Scholar
  30. —, Ribanpierre, F. de., Dolivo, N.: Les cellules chromaffines des ganglions cervicaux supérieures du Rat. J. Microsc.5, 791–794 (1966).Google Scholar
  31. Unsicker, K.: Über die Ganglienzellen im Nebennierenmark des Goldhamsters. Z. Zellforsch.76, 187–219 (1967).Google Scholar
  32. Virrágh, Sz., Both, A. K.: The fine structure of abdominal paraganglia in the newborn mouse. Acta biol. Acad. Sci. Hung.18, 161–179 (1967).Google Scholar
  33. Williams, T. M.: Electron microscopic evidence for an autonomic interneuron. Nature (Lond.)214, 309–310 (1967).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • Lars Olson
    • 1
  1. 1.Department of HistologyKarolinska InstitutetStockholm

Personalised recommendations