Skip to main content

Advertisement

Log in

Total and regional bone mineral content in women treated with GnRH agonists

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Changes in bone mineral content induced by GnRH agonists were investigated by measuring total body bone mineral content (TBBM) and regional bone mineral content (BMC) (arms, legs, trunk, pelvis) and densities with dual energy X-ray absorptiometry in 25 premenopausal women before and after a 6-month treatment with gonadotropin-releasing hormone (GnRH) agonists. Biological markers of bone remodeling, estrogens, luteinizing hormone, and follicle-stimulating hormone were also measured. Weight and body mass index increased significantly after treatment (P<0.05), and TBBM, corrected for weight (TBBM/W), decreased (P<0.001). The changes in BMC that we observed ranged from +2.5% to -6.9%. The greatest decrease in regional BMC occurred in the trunk (4.4%, P<0.001), with TBBM decreasing by 2.1% (P<0.001). No significant changes were observed in the limbs. Tartrate-resistant acid phosphatase (TRAP) increased significantly after treatment (P<0.001) and a significant negative correlation between TRAP and TBBM (P<0.001) and between TRAP and estradiol (P<0.001) were observed before treatment. The lack of changes observed in the BMC of the limbs indicate that GnRH agonists cause a preferential loss of BMC in trunk osseous structures, a situation similar to that of the first years of menopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goulding A, Fisher L (1991) Preventive effects of clomifene citrate on estrogen-deficiency osteopenia elicited by LHRH agonist administration in the rat. J Bone Miner Res 6:1177–1181

    Google Scholar 

  2. Saggese G, Bertelloni S, Baroncelli GI, Pardi D, Cinquanta L (1991) Bone loss during gonadotropin-releasing hormone agonist treatment in girls with true precocious puberty is not due to an impairment of calcitonin secretion. J Endocrinol Invest 14: 231–236

    Google Scholar 

  3. Riis BJ, Christiansen C, Johansen JS, Jacobson J (1990) Is it possible to prevent bone loss in young women treated with luteinizing hormone-releasing hormone agonist? J Clin Endocrinol Metab 70:920–924

    Google Scholar 

  4. Matta WH, Shaw RW, Hesp R, Katz D (1987) Hypogonadism induced by luteinising hormone-releasing hormone agonist analogues: effects on bone density in premenopausal women. Br Med J 294:1523–1524

    Google Scholar 

  5. Cann CE, Henzl M, Burry K, Andreyko J, Hanson F, Adamson GD, Trobough G, Henrichs L, Stewart G (1987) Reversible bone loss is produced by the GnRH agonist nafarelin. In: Cohn DV, Martin TJ, Meunier JP (eds) Calcium regulation and bone metabolism, vol 9. Excerpta Medica, Amsterdam, pp 123–127

    Google Scholar 

  6. Devogelaert JP, Huaux JP, Thomas K, Nagant de Deuxchaisnes C (1987) Differential effect of the Gn-RH agonist buserelin on the axial and the appendicular skeleton at different scanning sites. Preferential loss of trabecular bone. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987, Osteopress ApS. Kobenhavn, Denmark, pp 588–591

    Google Scholar 

  7. Fogelman I (1992) Gonadotropin-releasing hormone agonists and the skeleton. Fertil Steril 157:715–724

    Google Scholar 

  8. Sartoris DJ, Resnick D (1990) Current and innovative methods for noninvasive bone densitometry. Radiol Clin North Am 28: 257–278

    Google Scholar 

  9. Holbrook TL, Barret-Connor E, Klauber M, Sartoris D (1991) A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. Calcif Tissue Int 49:305–307

    Google Scholar 

  10. Rico H, Revilla M, Hernandez ER, Villa LF, López-Alonso A (1991) Total and regional bone mineral content in normal premenopausal women. Clin Rheumatol 10:423–425

    Google Scholar 

  11. Russell-Aulet M, Wang J, Thornton J, Colt EWD, Pierson RN (1991) Bone mineral density and mass by total-body dualphoton absorptiometry in normal white and Asian men. J Bone Miner Res 6:1109–1113

    Google Scholar 

  12. Harris S, Dallal GE, Dawson-Hughes B (1992) Influence of body weight on rates of change in bone density of the spine, hip, and radius in postmenopausal women. Calcif Tissue Int 50:19–23

    Google Scholar 

  13. Johansen JS, Riis BJ, Hassager C, Moen M, Jacobson J, Christiansen C (1988) The effect of a gonadotropin-release hormone agonist analog (nafarelin) on bone metabolism. J Clin Endocrinol Metab 67:701–706

    Google Scholar 

  14. Neuwirth RS (1990) Leiomyomas of the uterus. In: Sciara JJ, Droegemueller W (eds) Gynecology and obstetrics, Vol. 1. JB Lippincott. Philadelphia, p 1–8

    Google Scholar 

  15. Delmas PD (1990) Biochemical markers of bone turnover for the clinical assessment of metabolic bone disease. Endocrinol Metab Clin North Am 19:1–18

    Google Scholar 

  16. Lindsay R, Mellish R, Cosman F, Dempster DW (1990) Biochemical markers of bone remodeling. In: Nordin BEC (ed) Osteoporosis: contributions to modern management. Parthenon Publisher Group. Lancaster, PA, pp 47–56

    Google Scholar 

  17. Kraenzlin ME, Lau KHW, Liang L, Freeman TK, Singer FR, Stepan J, Baylink DJ (1990) Development of an immunoassay for human serum osteoclastic tartrate-resistant acid phosphatase. J Clin Endocrinol Metab 71:442–451

    Google Scholar 

  18. Stepan JJ, Musilova J, Pacovsky V (1989) Bone demineralization, biochemical indices of bone remodeling, and estrogen replacement therapy in adults with Turner's syndrome. J Bone Miner Res 14:193–198

    Google Scholar 

  19. Revilla M, Iritia M, Arribas I, Alvarez de los Heros JI, Rico H (1991) Tartrate-resistant acid phosphatase as a biological marker of bone remodeling and turnover in women in relation to their gonadal state. J Obstet Gynaecol 12:191–194

    Google Scholar 

  20. Schiele F, Artur Y, Floc'h A, Siest G (1988) Total, tartrateresistant, and tartrate-inhibited acid phosphatase in serum: biological variations and reference limits. Clin Chem 34:685–690

    Google Scholar 

  21. Rico H, Iritia M, Arribas I, Revilla M (1990) Perfil biológico de la fosfatasa ácida tartrato resistente como marcador de la resorción ósea. Rev Esp Fisiol 46:379–384

    Google Scholar 

  22. Stepan JJ, Pospichal J, Schreiber V, Kanka J, Mensik J, Presl J, Pacovsky V (1989) The application of plasma tartrate-resistant acid phosphatase to assess changes in bone resorption in response to artificial menopause and its treatment with estrogen or norethisterone. Calcif Tissue Int 45:273–280

    Google Scholar 

  23. Aaron JE, Francis RM, Peacock M, Malins NB (1989) Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop 243:294–305

    Google Scholar 

  24. Rico H, Charro A, DePablos I, Bordiu E, Hernandez ER, Espinos D (1984) Lack of hormonal changes in postmenopausal women of equal weight with and without osteoporosis, including relation to time of menopause. Clin Rheumatol 3:337–343

    Google Scholar 

  25. Vaughan JM (1975) The physiology of bone. Clarendon Press. Oxford

    Google Scholar 

  26. Genant HK, Cann CE, Ettinger B, Gordon GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97:699–705

    Google Scholar 

  27. Hernández ER, Revilla M, Rico H (1991) Total body bone mineral and pelvis bone mineral content as parameters of bone mass in men. Acta Anat 142:227–230

    Google Scholar 

  28. Rico H, Revilla M, Hernández ER, Villa LF, Alvarez del Buergo Ma (1992) Is pelvic bone mineral content assessed through dual energy X-ray absorptiometry an appropriate anatomical area for bone mass stimulation in women? Clin Rheumatol 11:508–511

    Google Scholar 

  29. Rico H, Revilla M, Hernández ER, Villa LF, Alvarez del Buergo Ma (1992) Total and regional bone mineral content in relation to menopause. Maturitas 15:233–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, H., Arnanz, F., Revilla, M. et al. Total and regional bone mineral content in women treated with GnRH agonists. Calcif Tissue Int 52, 354–357 (1993). https://doi.org/10.1007/BF00310198

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310198

Key words

Navigation