Skip to main content
Log in

Spectral analysis of marine geoid heights and ocean depths: Constraints on models of lithospheric and sublithospheric processes

  • Part III
  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

Cross-spectral analysis has been used to study the relationship between geoid and bathymetry in 16°×16° blocks in the oceans. The admittances resulting from this analysis have been compared with thermomechanical models of the lithosphere and sublithosphere in order to determine modes of topographic compensation in different parts of the oceans. Peak admittances at short wavelengths (λ<800 km) indicate that loads are supported by the mechanical strength of the lithosphere, while peak admittances at long wavelengths (λ>800 km) are indicative of lithospheric cooling or dynamic sublithospheric processes. Models of upper mantle convection predict higher admittances at long wavelengths than do models of lithospheric cooling. In most areas the observed admittances can be explained by models of the thermomechanical properties of the lithosphere, but in the eastern Pacific Ocean, the northern Indian Ocean, and over the Cape Verde Rise high long-wavelength admittances are evidence for the existence of upper mantle convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbramowitzM. and StegunI. A., (eds.), 1965, Handbook of Mathematical Functions, Dover, New York.

    Google Scholar 

  • BuckW. R. and ParmentierE. M., 1986, Convection beneath Young Oceanic Lithosphere: Implications for Thermal Structure and Gravity, J. Geophys. Res. 91, 1961–1974.

    Google Scholar 

  • CazenaveA. and DominhK., 1984, Geoid Heights over the Louisville Ridge (South Pacific), J. Geophys. Res. 89, 11,171–11,179.

    Google Scholar 

  • CazenaveA., LagoB., DominhK., and LambeckK., 1980, On the Response of the Ocean Lithosphere to Sea-Mount Loads from the Geos 3 Satellite Radar Altimeter Observations, Geophys. J. R. Astron. Soc. 63, 233–252.

    Google Scholar 

  • CourtneyR. C. and WhiteR. S., 1986, Anomalous Heat Flow and Geoid across the Cape Verde Rise: Evidence for Dynamic Support from a Thermal Plume in the Mantle, Geophys. J. R. Astron. Soc. 87, 815–867.

    Google Scholar 

  • CroughS. T., 1982, Geoid Height Anomalies over the Cape Verde Rise, Marine Geophys. Res. 5, 263–271.

    Google Scholar 

  • CroughS. T., 1982, Hotspot Swells, Ann. Rev. Earth. Planet. Sci. 11, 165–193.

    Google Scholar 

  • DavisE. E. and ListerC. R. B., 1974, Fundamentals of Ridge Crest Topography, Earth Planet. Sci. Lett. 21, 405–413.

    Google Scholar 

  • DetrickR. S., SclaterJ. G., and ThiedeJ., 1977, The Subsidence of Aseismic Ridges, Earth Planet. Sci, Lett. 34, 185–196.

    Google Scholar 

  • DetrickR. S., VonHerzenR. P., ParsonsB., SandwellD., and DoughertyM., 1986, Heat Flow Observations on the Bermuda Rise and Thermal Models of Midplate Swells, J. Geophys. Res. 91, 3701–3723.

    Google Scholar 

  • DormanL. M. and LewisB. T. R., 1970, Experimental Isostasy, 1. Theory of the Determination of the Earth's Isostatic Response to a Concentrated Load, J. Geophys. Res. 75, 3357–3365.

    Google Scholar 

  • FischerK. M., McNuttM. K., and ShureL., 1986, Thermal and Mechanical Constraints on the Lithosphere beneath the Marquesas Swell, Nature 322, 733–736.

    Google Scholar 

  • FisherR. L., SclaterJ. G., and McKenzieD. P., 1971. Evolution of the Central Indian Ridge, Western Indian Ocean, Geol. Soc. Am. Bull. 82, 553–562.

    Google Scholar 

  • FleitoutL. and YuenD. A., 1984, Secondary Convection and the Growth of the Oceanic Lithosphere, Phys. Earth Planet. Inter. 36, 181–212.

    Google Scholar 

  • ForsythD. W., 1985, Subsurface Loading and Estimates of the Flexural Rigidity of Continental Lithosphere, J. Geophys. Res. 90, 12,623–12,632.

    Google Scholar 

  • GibertD. and CourtillotV., 1987, Seasat Altimetry and the South Atlantic Geoid 1. Spectral Analysis, J. Geophys. Res. 92, 6235–6248.

    Google Scholar 

  • GoslinJ. and PatriatP., 1984, Absolute and Relative Plate Motions and Hypotheses on the Origin of Five Aseismic Ridges in the Indian Ocean, Technophys. 101, 221–244.

    Google Scholar 

  • HagerB. H., 1984, Subducted Slabs and the Geoid: Constraints on Mantle Rheology and Flow, J. Geophys. Res. 89, 6003–6015.

    Google Scholar 

  • HaxbyW. F. and TurcotteD. L., 1978, On Isostatic Geoid Anomalies, J. Geophys. Res. 83, 5473–5478.

    Google Scholar 

  • HeirtzlerJ. R. (ed.), 1985, Relief of the Surface of the Earth, Report MCG-2, National Geophysical Data Center, Boulder, Colorado.

    Google Scholar 

  • LangsethM. G., LePichonX. and EwingM., 1966, Crustal Structure of Mid-Ocean Ridges, 5, Heat Flow through the Atlantic Ocean, J. Geophys. Res. 71, 5321–5355.

    Google Scholar 

  • LewisB. T. R. and DormanL. M., 1970, Experimental Isostasy, 2. An Isostatic Model for the U.S.A. Derived from Gravity and Topographic Data. J. Geophys. Res. 75, 3367–3386.

    Google Scholar 

  • MarshB. D. and MarshJ. G., 1976, On Global Gravity Anomalies and Two-Scale Mantle Convection, J. Geophys. Res. 81, 5267–5280.

    Google Scholar 

  • MarshB. D., MarshJ. G., and WilliamsonR. G., 1984, On Gravity from SST, Geoid from Seasat, and Plate Age and Fracture Zones in the Pacific, J. Geophys. Res. 89, 6070–6078.

    Google Scholar 

  • McAdooD. C., 1982, On the compensation of Geoid Anomalies due to Subducting Slabs, J. Geophys. Res. 87, 8664–8692.

    Google Scholar 

  • McAdooD. C. and MartinC. F., 1984, Seasat Observations of Lithospheric Flexure Seaward of Trenches, J. Geophys. Res. 89, 3201–3210.

    Google Scholar 

  • McKenzieD. P., 1967, Some Remarks on Heat Flow and Gravity Anomalies, J. Geophys. Res. 72, 6261–6273.

    Google Scholar 

  • McKenzieD., 1977, Surface Deformations, Gravity Anomalies and Convection, Geophys. J. R. Astron. Soc. 48, 211–238.

    Google Scholar 

  • McKenzieD. and BowinC., 1976, The Relationship between Bathymetry and Gravity in the Atlantic Ocean, J. Geophys. Res. 81, 1903–1915.

    Google Scholar 

  • McKenzieD., WattsA., ParsonsB., and RoufosseM., 1980, Planform of Mantle Convection beneath the Pacific Ocean, Nature 288, 442–446.

    Google Scholar 

  • McNuttM., 1979, Compensation of Oceanic Topography: An Application of the Response Function Technique to the Surveyor Area, J. Geophys. Res. 84, 7589–7598.

    Google Scholar 

  • MunkW. H. and CartwrightD. E., 1966, Tidal Spectroscopy and Prediction, Phil. Trans. Roy. Soc. Lond., Ser. A. 259, 533–581.

    Google Scholar 

  • ParkerR. L. and OldenburgD. W., 1973, Thermal Model of Ocean Ridges, Nature Phys. Sci. 242, 137–139.

    Google Scholar 

  • ParsonsB. and DalyS., 1983, The Relationship between Surface Topography, Gravity Anomalies, and Temperature Structure of Convection, J. Geophys. Res. 88, 1129–1144.

    Google Scholar 

  • ParsonsB. and SclaterJ.G., 1977, An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age, J. Geophys. Res. 82, 803–827.

    Google Scholar 

  • PhillipsR. J. and IvinsE. R., 1979, Geophysical Observations Pertaining to Solid State Convection in the Terrestrial Planets, Phys. Earth Planet. Inter. 19, 107–148.

    Google Scholar 

  • Renkin, M. L., 1986, Age, Depth, and Residual Depth Anomalies in the North Pacific: Implications for Thermal Models of the Lithosphere and Upper Mantle, M.A. thesis, 117 pp., University of Texas.

  • RichterF. M. and ParsonsB., 1975, On the Interaction of Two Scales of Convection in the Mantle, J. Geophys. Res. 80, 2529–2541.

    Google Scholar 

  • SandwellD. T. and RenkinM. L., 1988, Compensation of Swells and Plateaus in the North Pacific: No Direct Evidence for Mantle Convection, J. Geophys. Res. 93, 2775–2783.

    Google Scholar 

  • SandwellS. and SchubertG., 1980, Geoid Heights versus Age for Symmetric Spreading Ridges, J. Geophys. Res. 85, 7235–7241.

    Google Scholar 

  • SclaterJ. G., ParsonsB., and JaupartC., 1981, Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss, J. Geophys. Res. 86, 11,535–11,552.

    Google Scholar 

  • SinhaM. C., LoudenK. E., and ParsonsB., 1981, The Crustal Structure of the Madagascar Ridge, Geophys. J. R. Astron. Soc. 66, 351–377.

    Google Scholar 

  • StarkM. and ForsythD. W., 1983, The Geoid, Small-Scale Convection, and Differential Travel Time Anomalies of Shear Waves in the Central Indian Ocean, J. Geophys. Res. 88, 2273–2288.

    Google Scholar 

  • TurcotteD. L. and OxburghE. R., 1967, Finite Amplitude Convection Cells and Continental Drift, J. Fluid Mech. 28, 29–42.

    Google Scholar 

  • Vening MeineszS. A., 1939, Tables Fondamentals pour la Reduction Isostatique Regionale, Bull. Geod. 63, 711–776.

    Google Scholar 

  • VogtP. R., ZondekB., FellP. W., CherkisN. Z., and PerryR. K., 1984, Seasat Altimetry, the North Atlantic Geoid, and Evaluation by Shipborne Subsatellite Profiles. J. Geophys. Res. 89, 9885–9903.

    Google Scholar 

  • Walcott, R. I., Flexure of the Lithosphere at Hawaii, Tectonophys. 9, 435–446.

  • WattsA. B., 1978, An Analysis of Isostasy in the World's Oceans, 1, Hawaiian-Emperor Seamount Chain, J. Geophys. Res. 83, 5989–6004.

    Google Scholar 

  • WattsA. B. and RibeN. M., 1984, On Geoid Heights and Flexure of the Lithosphere at Seamounts, J. Geophys. Res. 89, 11,152–11,170.

    Google Scholar 

  • WattsA. B., McKenzieD. P., ParsonsB. E., and RoufosseM., 1985, The Relationship between Gravity and Bathymetry in the Pacific Ocean, Geophys. J. R. Astron. Soc. 83, 263–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, M.T., Mcadoo, D.C. Spectral analysis of marine geoid heights and ocean depths: Constraints on models of lithospheric and sublithospheric processes. Mar Geophys Res 10, 157–180 (1988). https://doi.org/10.1007/BF00310062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310062

Key words

Navigation