Skip to main content
Log in

The distribution of geothermal fields along the East Pacific Rise from 13°10′ N to 8°20′ N: Implications for deep seated origins

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

In 1983 a combined SeaMARC I, Sea Beam swath mapping expedition traversed the East Pacific Rise from 13°20′ N to 9°50′ N, including most of the Clipperton Transform Fault at 10°15′ N, and a chain of seamounts at 9°50′ N which runs obliquely to both the ridge axis and transform fault trends. We collected temperature, salinity and magnetic data along the same track. These data, combined with Deep-Tow data and French hydrocasts, are used to construct a thermal section of the rise axis from 13°10′ N to 8°20′ N.

Thermal data collected out to 25 km from the rise axis and along the Clipperton Transform Fault indicate that temperatures above the rise axis are uniformly warmer by 0.065°C than bottom water temperatures at equal depths off the axis. The rise axis thermal structure is punctuated by four distinct thermal fields with an average spacing of 155 km. All four of these fields are located on morphologic highs. Three fields are characterized by lenses of warmed water ≈ 20 km in length and ≈ 300 m thick. Additional clues to hydrothermal activity are provided in two cases by high concentrations of CH4, dissolved Mn and 3He in the water column and in another case by concentrations of benthic animals commonly associated with hydrothermal regions.

We use three methods to estimate large-scale heat loss. Heat flow estimates range from 1250 MW to 5600 MW for one thermal field 25 km in length. Total convective heat loss for the four major fields is estimated to lie between 2100 MW and 9450 MW. If we add the amount of heat it takes to warm the rest of the rise axis (489 km in length) by 0.065.°C, then the calculated axial heat loss is from 12,275 to 38,525 MW (19–61% of the total heat theoretically emitted from crust between 0 and 1 m.y. in age).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armi, L., 1978, Mixing in the Deep Ocean. The Importance of Boundaries, Oceanus 21, 14–19.

    Google Scholar 

  • Armi, L. and Millard, R. C.Jr., 1976, The Bottom Boundary Layer of the Deep Ocean, J. Geophys. Res. 81, 4983–4920.

    Google Scholar 

  • Baines, W. D. and Turner, J. S., 1969, Turbulent Buoyant Convection from a Source in a Confined Region, J. Fluid Mech. 57, 51–80.

    Google Scholar 

  • Baker, E. T. and Massoth, G. J., 1986a, Hydrothermal Plume Measurements: A Regional Perspective, Science 234, 980–982.

    Google Scholar 

  • Baker, E. T. and Massoth, G. J., 1986b, The Along-strike Distribution of Hydrothermal Activity on a Spreading Segment of the Juan de Fuca Ridge (abst.), EOS 67, 1027.

    Google Scholar 

  • Ballard, R. D., Francheteau, J., Juteau, T., Rangin, C., and Normark, W., 1981, East Pacific Rise at 21° N: the Volcanic, Tectonic, and Hydrothermal Processes of the Central Axis, Earth Planet. Sci. Lett. 55, 1–10.

    Google Scholar 

  • Ballard, R. D. and Francheteau, J., 1982, The Relationship Between Active Sulfide Deposition and the Axial Processes of the Mid-ocean Ridge, Marine Tech. Soc. J. 16, 8–22.

    Google Scholar 

  • Cann, J. R. and Strens, M. R., 1982, Black Smokers Fuelled by Freezing Magma, Nature 298, 147–149.

    Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine Thermal Springs on the Galapagos Rift, Science 203, 1073–1083.

    Google Scholar 

  • Crane, K. and Normark, W. R., 1977, Hydrothermal Activity and Crestal Structure of the East Pacific Rise at 21° N, J. of Geophys. Res. 82, B3, 5336–5348.

    Google Scholar 

  • Crane, K. 1977, Hydrothermal Activity and Near Axis Structure at Mid-ocean Spreading Centers, PhD thesis, Univ. of Calif., San Diego.

  • Crane, K. and R. D.Ballard, 1980, The Galapagos Rift at 86° W: Structure and Morphology of Hydrothermal Fields, J. Geophys. Res. 85, 1443–1445.

    Google Scholar 

  • Crane, K., 1985, The Spacing of Rise Axis Highs: Dependence upon Diapiric Processes in the Underlying Asthenosphere, EPSL 72, 405–414.

    Google Scholar 

  • Crane, K., Aikman, F.III, Embly, R., Hammond, S., Malahoff, A., and Lupton, J., 1985, The Distribution of Geothermal Fields on the Juan de Fuca Ridge, J. Geophys. Res. 90, B1, 727–744.

    Google Scholar 

  • Crane, K., 1987, Structural Evolution of the East Pacific Rise Axis from 13°10′ N to 10°35′ N: Interpretations from SeaMARC I Data, Tectonophysics 136, 65–124.

    Google Scholar 

  • Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T., 1987, Multichannel Seismic Imaging of an Axial Magma Chamber Along the East Pacific Rise Between 9° N and 13° N, Nature 326, 35–41.

    Google Scholar 

  • Elder, J. W., 1967, Transient Convection in a Porous Medium, J. Fluid Mech. 27, 609–623.

    Google Scholar 

  • Eittreim, S. L., Biscaye, P. E., and Amos, A. F., 1975, Benthic Nepheloid Layers and the Ekman Thermal Pump, J. Geophys. Res. 80, 5061–5067.

    Google Scholar 

  • Eittreim, S. L., Biscaye, P. E., and Jacobs, S. S., 1983, Bottom Water Observations in the Vema Fracture Zone, J. Geophys. Res. 88, 2609–2614.

    Google Scholar 

  • Fornari, D. J., Ryan, W. B. F., and Fox, P. J., 1984, The Evolution of Craters and Calderas on Young Seamounts. Insights from SeaMARC I and Sea Beam Sonar Surveys of a Small Seamount Group Near the Axis of the East Pacific Rise at 10° N, J. Geophys. Res. 89, 11,069–11,084.

    Google Scholar 

  • Gente, P., Auzende, J. M., Renard, V., Fouquet, Y., and Bideau, D. 1986, Detailed Geological Mapping by Submersible on the East Pacific Rise Axial Graben near 13° N. E.P.S.L., 78, 224–236.

    Google Scholar 

  • Haxby, W. and Weissel, J. K., 1982, Evidence for Small-Scale Mantle Convection from Seasat Altimeter Data, EOS Trans. Am. Geophys. Union 64, 45,838.

    Google Scholar 

  • Hekinian, R., Francheteau, J., Renard, V., Ballard, R. D., Choukroune, P., Cheminee, J. L., Albarede, F., Minster, J. F., Charlou, J. L., Marty, J. C., and Boulegue, J., 1983, Intense Hydrothermal Activity at the Rise Axis of the East Pacific Rise near 13° N: Submersible Witnesses the Growth of Sulfide Chimney, Mar. Geophys. Res 6, 1–14.

    Google Scholar 

  • Hekinian, R., Auzende, J. M., Francheteau, J., Gente, P., Ryan, W. B. F., and Kappel, E., 1985, Offset Spreading Centers near 12°53′ N on the East pacific Rise: Submersible Observations and Composition of the Volcanics, Mar. Geophys. Res. 7, 359–377.

    Google Scholar 

  • Kastens, K. A., Ryan, W. B. F., and Fox, P. J., 1986, The Structural and Volcanic Expression of a Fast-Slipping Ridge-Transform-Ridge Plate Boundary: SeaMARC I and Photographic Surveys at the Clipperton Transform Fault, J. Geophys. Res. 91, B3, 3569–3589.

    Google Scholar 

  • Little, S. A., Stolzenbach, K. D., and von Herzen, R. P., 1987, Characterization of Plume Flow from a Hydrothermal Vent Field, J. Geophys. Res. (submitted).

  • Lonsdale, P. and Spiess, F. N., 1980, Deep-Tow Observations at the East Pacific Rise, 8°45′ N and Some Interpretations., Init. Reports of the Deep Sea Drilling Project, V. LIV, Wash. U.S. Govt Printing Office.

  • Lupton, J. E. and Craig, H., 1981, A Major 3He Source on the EPR, Science 214, 13–18.

    Google Scholar 

  • Lupton, J. E., Delaney, J. R., Johnson, H. P., and Tivey, M. K., 1985, Entrainment and Vertical Transport of Deep-ocean Water by Buoyant Hydrothermal Plumes, Nature 316, 621–623.

    Google Scholar 

  • Macdonald, K. C., Sempere, J.-C., and Fox, J. P., 1984, The East Pacific Rise from the Siqueiros to the Orozco Fracture Zones: Along Strike Continuity of the Axial Neovolcanic Zone and the Structure and Evolution of Overlapping Spreading Centers, J. Geophys. Res. 89, B7, 6049–6069.

    Google Scholar 

  • McConachy, T. F., Ballard, R. D., Mottl, M. J., von Herzen, R. P., 1986, Geologic Form and Setting of a Hydrothermal Vent Field at Lat 10°56′ N East Pacific Rise: A Detailed Study Using Angus and Alvin, Geology 14, 295–298.

    Google Scholar 

  • Merlivat, L. and Dimon, B., 1982, L'hydrothermalisme sousmarin: Science et Recherche, pp. 73–76.

  • Reid, J., 1982, Evidence of an Effect of Heat Flux from the East Pacific Rise upon the Characteristics of Mid-depth waters, Geophys. Res. Lett. 9, 381–384.

    Google Scholar 

  • Riser, S.C., 1988, Helium-3 and Thermal Plumes in the Abyssal South Pacific, J. Phys. Oceanog. (in press).

  • Rouse, H. C., Yin, C. S., and Humphreys, H. W., 1952, Gravitational Convection from a Boundary Source, Tellus 4, 201–210.

    Google Scholar 

  • Schouten, H., Klitgord, K. D., and Whitehead, J. A., 1985, Segmentation of Mid-ocean Ridges, Nature 317, 225–229.

    Google Scholar 

  • Stommel, H. M., 1982, Is the South Pacific 3He Plume Dynamically Active?, EPSL 61, 63–67.

    Google Scholar 

  • Van Andel, Tj. H. and Ballard, R. D., 1979, The Galapagos Rift at 86° W, 2: Volcanism, Structure and Evolution of the Rift Valley, J. Geophys. Res. 84, 5390–5406.

    Google Scholar 

  • Weatherly, G. L. and Martin, P. J., 1978, On the Structure and Dynamics of the Oceanic Boundary Layer, J. Phys. Oceanography 8, 557–570.

    Google Scholar 

  • Wimbush, M. and Munk, W., 1970, The Benthic Boundary Layer, in A.Maxwell (ed.), The Sea, vol. 4, part 1, John Wiley, New York, pp. 731–758.

    Google Scholar 

  • Wolery, T. J. and Sleep, N. H., 1976, Hydrothermal Circulation and Geochemical Flux at Mid-ocean Ridges, J. Geology. 84, 249.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, K., Aikman, F. & Foucher, JP. The distribution of geothermal fields along the East Pacific Rise from 13°10′ N to 8°20′ N: Implications for deep seated origins. Mar Geophys Res 9, 211–236 (1988). https://doi.org/10.1007/BF00309974

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309974

Keywords

Navigation