Skip to main content
Log in

Fast aiming movements with the left and right arm: Evidence for two-process theories of motor control

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

The kinematics of leftward and rightward movements are different. The question is raised whether these differences in both arms are best accounted for in terms of the flexion-extension dimension or the leftward-rightward dimension. In a simple step-tracking experiment the acceleration-time curves of fast flexions and extensions of the left and of the right elbow joint in a horizontal plane were recorded. The durations of individual segments of the acceleration curves are best predicted by spatial direction: that is, the differences between leftward and rightward movements are either both positive or both negative in both arms. This holds only for the first part of the movement until maximum deceleration is reached. From then on the timing is best predicted by the flexion-extension dimension. This is taken as evidence for a two-process theory of motor control according to which a central process is first in command and a lower-level, muscle-related process then takes over. Although a change which corresponds to the one observed in the time variables is not seen in the maxima of the acceleration curves, this seeming disparity can be reconciled with a two-process theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JA (1971) A closed-loop theory of motor learning. J Mot Behav 3:111–150

    Google Scholar 

  • Adams JA (1976) Issues for a closed-loop theory of motor learning. In: Stelmach GE (ed) Motor control: Issues and trends. Academic Press, New York

    Google Scholar 

  • Asratyan DG, Fel'dman AG (1965) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. I. Mechanographic analysis of the work on a joint on execution of a postural task. Biophys 10:925–935

    Google Scholar 

  • Bizzi E (1980) Central and peripheral mechanisms in motor control. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam

    Google Scholar 

  • Bizzi E, Polit A (1979) Characteristics of motor programs underlying visually evoked movements. In: Talbott RE, Humphrey DR (eds) Posture and movement. Raven Press, New York

    Google Scholar 

  • Bouisset S, Lestienne F (1974) The organization of a simple voluntary movement as analysed from its kinematic properties. Brain Res 71:451–457

    Google Scholar 

  • Brooks VB (1979) Motor programs revisited. In: Talbott RE, Humphrey DR (eds) Posture and movement, Raven Press, New York

    Google Scholar 

  • Christina RW (1970) Minimum visual feedback processing time for amendment of an incorrect movement. Percept Mot Skills 31:991–994

    Google Scholar 

  • Cooke JD (1980) The organization of simple, skilled movements. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam

    Google Scholar 

  • Craik KJW (1947) Theory of the human operator in control systems. I. The operator as an engineering system. Brit J Psychol 38:56–61

    Google Scholar 

  • Derwort A (1938) Untersuchungen über den Zeitverlauf figurierter Bewegungen beim Menschen. Pflüg Arch ges Physiol 240:661–675

    Google Scholar 

  • Ells JG (1973) Analysis of temporal and attentional aspects of movement control. J Exp Psychol 99:10–21

    Google Scholar 

  • Fel'dman AG (1966a) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophys 11:565–578

    Google Scholar 

  • Fel'dman AG (1966b) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. III. Mechanographic analysis of the execution by man of the simplest motor task. Biophys 11:766–775

    Google Scholar 

  • Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47:381–391

    Google Scholar 

  • Fitts PM, Peterson JR (1964) Information capacity of discrete motor responses. J Exp Psychol 67:103–112

    Google Scholar 

  • Ghez C (1979) Contributions of central programs to rapid limb movement in the cat. In: Asanuma H, Wilson VJ (eds) Integration in the nervous system. Igaku-Shoin, Tokio

    Google Scholar 

  • Glencross DJ (1977) Control of skilled movements. Psychol Bull 84:14–29

    Google Scholar 

  • Granit R (1970) The basis of motor control. Academic Press, New York

    Google Scholar 

  • Grillner S (1972) The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol Scand 86:92–108

    Google Scholar 

  • Hacker W (1967) Grundlagen der Regulation von Arbeitsbewegungen. Probl Ergebn Psychol Beiheft 1

  • Hacker W (1974) Anforderungen an Regulation und Zeitbedarf bei geführten Bewegungen: Zur Gültigkeit des Derwort-von Weizsäcker'schen Gesetzes der konstanten Figurzeit. Z Psychol 182:307–337

    Google Scholar 

  • Hallett M, Shahani BT, Young RR (1975) EMG analysis of stereotyped voluntary movements in man. J Neurol Neurosurg Psychiat 38:1154–1162

    Google Scholar 

  • Henry FM, Rogers DE (1960) Increased response latency for complicated movements and a ‘memory-drum’ theory of neuromotor reaction. Res Quart 31:448–458

    Google Scholar 

  • Heuer H (1979) Über Bewegungsprogramme bei willkürlichen Bewegungen. Berichte aus dem Fachbereich Psychologie der Philipps-Universität Marburg/Lahn, Nr 76

  • Heuer H (1981) Über Beanspruchungsänderungen im Verlauf schneller gezielter Bewegungen. Z exp angew Psychol 28:255–280

    Google Scholar 

  • Holst Ev (1937) Vom Wesen der Ordnung im Zentralnervensystem. Naturwissensch 25:641–647

    Google Scholar 

  • Holst Ev (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebn Physiol 42:228–306

    Google Scholar 

  • Houk JC (1979) Regulation of stiffness by skeletomotor reflexes. Ann Rev Physiol, 41:99–114

    Google Scholar 

  • Houk J, Henneman F (1967) Feedback control of skeletal muscles. Brain Res 5:433–451

    Google Scholar 

  • Jagacinski RJ, Repperger DW, Moran MS, Ward SL, Glass B (1980) Fitts's law and the microstructure of rapid discrete movements. J Exp Psychol Hum Percept Perf 6:309–320

    Google Scholar 

  • Kalveram KT (1975) Das Marburger System. Berichte aus dem Fachbereich Psychologie der Philipps-Universität Marburg/Lahn, Nr 44

  • Keele SW (1968) Movement control in skilled motor performance. Psychol Bull 70:387–403

    Google Scholar 

  • Keele SW, Posner MI (1968) Processing of visual feedback in rapid movements. J Exp Psychol 77:155–158

    Google Scholar 

  • Kelso JAS, Holt KG, Kugler PN, Turvey MT (1980) On the concept of coordinative structures as dissipative structures. II. Empirical lines of convergence. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior, North-Holland, Amsterdam

    Google Scholar 

  • Kelso JAS, Southard DL, Goodman D (1979) On the coordination of two-handed movements. J Exp Psychol Hum Percept Perf 5:229–238

    Google Scholar 

  • Kelso JAS, Stelmach GE (1976) Central and peripheral mechanisms in motor control. In: Stelmach GE (ed) Motor control: Issues and trends. Academic Press, New York

    Google Scholar 

  • Kennedy D (1973) Control of motor output. In: Stein RB, Pearson KG, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum Press, New York

    Google Scholar 

  • Kern G (1933) Motorische Umreißung optischer Gestalten. Neue Psychol Stud 9:65–104

    Google Scholar 

  • Klapp ST (1979) Doing two things at once: The role of temporal compatibility. Mem Cognit 7:375–381

    Google Scholar 

  • Küpfmüller K, Poklekowski P (1956) Der Regelmechanismus willkürlicher Bewegungen. Z Naturforsch 11b:1–7

    Google Scholar 

  • Langolf DG, Chaffin DB, Foulke JA (1976) An investigation of Fitts's law using a wide range of movement amplitudes. J Mot Behav 8:113–128

    Google Scholar 

  • Lashley KS (1951) The problem of serial order in behavior. In: Jeffress LA (ed) Cerebral mechanisms in behavior. Wiley, New York

    Google Scholar 

  • Lestienne F (1979) Effects of inertial load and velocity on the braking process of voluntary limb movements. Exp Brain Res 35:407–418

    Google Scholar 

  • Lestienne F, Polit A, Bizzi E (1980) From movement to posture. In: Nadeau CH, Halliwell WR, Newell KM, Roberts GC (eds) Psychology of motor behavior and sport — 1979. Human Kinetics Publishers, Champaign, Ill.

    Google Scholar 

  • Marteniuk RG, MacKenzie CL (1980) A preliminary theory of two-hand co-ordinated control. In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam

    Google Scholar 

  • McCormick EJ (1970) Human factors engineering. McGraw-Hill, New York

    Google Scholar 

  • McLeod P (1980) What can RT tell us about the attentional demands of movement? In: Stelmach GE, Requin J (eds) Tutorials in motor behavior. North-Holland, Amsterdam

    Google Scholar 

  • Megaw ED (1972) Directional errors and their correction in a discrete tracking task. Ergonomics 15:633–643

    Google Scholar 

  • Merton PA (1953) Speculations on the servo control of movement. In: Wolstenholme GEW (ed) The spinal cord. Little, Brown. Boston. Mass.

    Google Scholar 

  • Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from the actions of the stretch reflex. J Neurophysiol 39:119–142

    Google Scholar 

  • Partridge LD (1967) Intrinsic factors producing inertial compensation in muscle. Biophys J 7:853–863

    Google Scholar 

  • Polit A, Bizzi F (1979) Characteristics of motor programs underlying arm movements in monkeys. J Neurophysiol 42:183–194

    Google Scholar 

  • Poulton EC (1966) Tracking behavior. In: Bilodeau EA (ed) Acquisition of skill. Academic Press, New York

    Google Scholar 

  • Schmidt RA, McGown C (1980) Terminal accuracy for unexpectedly loaded rapid movements: Evidence for a mass-spring mechanism in programming. J Mot Behav 12:149–161

    Google Scholar 

  • Schmidt RA, Zelaznik HN, Frank JS (1978) Sources of inaccuracy in rapid movement. In: Stelmach GE (ed) Information processing in motor control and learning. Academic Press, New York

    Google Scholar 

  • Schmidtke H (1960) Über die Struktur willkürlicher Bewegungen. Psychol Beitr 5:428–439

    Google Scholar 

  • Taylor FV, Birmingham HP (1948) Studies of tracking behavior. II. The acceleration pattern of quick manual corrective responses. J Exp Psychol 38:738–795

    Google Scholar 

  • Timpe K-P (1968) Ansätze zur Modellierung eingeübter sensomotorischer Prozesse (Das Regelverhalten des Menschen). In: Klix F (ed) Kybernetische Analysen geistiger Prozesse. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Vallbo AB (1971) Muscle spindle response at the onset of isometric voluntary contractions in man: Time difference between fusimotor and skeletomotor effects. J Physiol 218:405–431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, H. Fast aiming movements with the left and right arm: Evidence for two-process theories of motor control. Psychol. Res 43, 81–96 (1981). https://doi.org/10.1007/BF00309640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309640

Keywords

Navigation