Skip to main content
Log in

Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mitochondrial DNA recombination was reduced in an yeast mutant lacking the NUC1 endo/exonuclease. Between linked markers in either the ω or cob region the frequency of recombination decreased nearly 50% compared to wild-type. Gene conversion frequencies in the var1 gene and in the ω region were also lower in the mutant strain. In particular, the gradient of gene conversion at ω was most affected by the absence of the NUC1 nuclease. In crosses between nuclease-deficient and wild-type strains, gene conversion frequencies at ω were reduced only when the ω+ allele was contributed to the zygote by the nuclease-deficient parent. We propose that the 5′ exonuclease activity of the NUC1 nuclease functions during recombination to enlarge heteroduplex tracts following a double-strand break in DNA. In crosses between nuclease-deficient and wild-type strains, the anisotropy in gene conversion frequencies at ω is hypothesized to be due to the slow mixing of parental motochondrial membranes as they fuse in the zygote.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birky CW Jr, Demko CA, Perlman PS, Strausberg RL (1978) Genetics 89:615–651

    Google Scholar 

  • Borst P (1972) Annu Rev Biochem 41:333–376

    Google Scholar 

  • Butow RA (1985) Trends Genet 1:81–84

    Google Scholar 

  • Butow RA, Perlman PS, Grossman LI (1985) Science 228:1496–1501

    Google Scholar 

  • Dake E, Hofmann TJ, McIntire S, Hudson A, Zassenhaus HP (1988) J Biol Chem 263:7691–7702

    Google Scholar 

  • Detloff P, White MA, Petes TD (1992) Genetics 132:113–123

    Google Scholar 

  • Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 505–635

    Google Scholar 

  • Dujon B, Slonimski PP, Weill L (1974) Genetics 78:415–437

    Google Scholar 

  • Dujon B, Collexaux L, Jacquier A, Michel F, Montheilhet C (1986) Mitochondrial introns as mobile genetic elements. The role of intron encoded proteins. In: Wickner RB, Hinnebusch A, Gunsalus A, Lambowitz A, Hollander A (eds) Extrachromosomal elements in lower eucaryotes. Plenum Publishing Corp. New York, pp 5–27

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Fogel S, Mortimer R, Lusnak K (1981) Mechanisms of meiotic gene conversion, or “wanderings on a foreign strand.” In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces, 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 289–340

    Google Scholar 

  • Foury F, Vanderstraeten S (1992) EMBO J 11:2717–2726

    Google Scholar 

  • Jacquier A, Dujon B (1985) Cell 41:383–394

    Google Scholar 

  • Johnson DA, Gautsch JW, Sportsman JR, Elder JH (1984) Gene Anal Techn 1:3–8

    Google Scholar 

  • Lancashire WE, Mattoon JR (1979) Mol Gen Genet 170:333–344

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nakagawa K-I, Morishima N, Shibata T (1992) EMBO J 11:2702–2715

    Google Scholar 

  • Nicolas A, Treco D, Schultes NP, Szostak JW (1989) Nature 338:35–39

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1985) Microbiol Rev 49:33–58

    Google Scholar 

  • Perlman PS, Butow RA (1989) Science 246:1106–1109

    Google Scholar 

  • Reenan RAG, Kolodner RD (1992) Genetics 132:975–985

    Google Scholar 

  • Strathern JN, Klar AJ, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Cell 31:183–192

    Google Scholar 

  • Sun H, Treco D, Szostak JW (1991) Cell 64:1155–1161

    Google Scholar 

  • Vincent RD, Hofmann TJ, Zassenhaus HP (1988) Nucleic Acids Res 16:3297–3312

    Google Scholar 

  • Wenzlau JM, Saldanha RJ, Butow RA, Perlman PS (1989) Cell 56:421–430

    Google Scholar 

  • White CI, Haber JE (1990) EMBO J 9:663–673

    Google Scholar 

  • Zassenhaus HP, Hofmann TJ, Uthayashanker R, Vincent RD, Zona M (1988) Nucleic Acids Res 16:3283–3296

    Google Scholar 

  • Zeff RA, Geliebter J (1987) Focus 9:1–2

    Google Scholar 

  • Zhu H, Conrad-Webb H, Liao XS, perlman PS, Butow RA (1989) Mol Cell Biol 9:1507–1512

    Google Scholar 

  • Zinn AR, Butow RA (1984) Cold Spring Harbor Symp Quant Biol 49:115–121

    Google Scholar 

  • Zinn AR, Butow RA (1985) Cell 40:887–895

    Google Scholar 

  • Zinn AR, Pohlman JK, Perlman PS, Butow RA (1987) Plasmid 17:248–256

    Google Scholar 

  • Zinn AR, Pohlman JK, Perlman PS, Butow RA (1988) Proc Natl Acad Sci USA 85:2686–2690

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Rothstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zassenhaus, H.P., Denniger, G. Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr Genet 25, 142–149 (1994). https://doi.org/10.1007/BF00309540

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309540

Key words

Navigation