Vererbung durch Kerngene und das Problem der ausserkaryotischen Vererbung bei Culex pipiens

II. Ausserkaryotische Vererbung
  • Hannes Laven
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barr, A. R., and L. Kartman: Biometrical notes on the hybridization of Culex pipiens L. and C. quinquefasciatus Say. J. of Parasitol. 37, 419–420 (1951).Google Scholar
  2. Boissezon, P. De: Remarques sur les conditions de la reproduction chez Culex pipiens L. pendant la période hivernale. Bull. Soc. Path. exot. Paris 22, 549–553 (1929).Google Scholar
  3. Contribution a l'étude de la biologie et de l'histophysiologie de Culex pipiens L. Archives de Zool. 70, 281–431 (1930).Google Scholar
  4. Bonnet, D. A.: The hybridization of Aedes aegypti and Aedes albopictus Skuse in the territory of Hawaii. Proc. Hawaian Ent. Soc. 14, 35–39 (1950).Google Scholar
  5. Boyd, M. F., and J. C. Russell: Preliminary observations on the inheritance of susceptibility to malaria infection as a character of Anopheles quadrimaculatus Say. Amer. J. Trop. Med. 23, 451–457 (1943).Google Scholar
  6. Buck, A. De: Beitrag zur Rassenfrage bei Culex pipiens; Z. angew. Entomol. 22, 242–252 (1935).Google Scholar
  7. Callan, H. G., and G. Montalenti: Chiasma interference in mosquitoes. J. Genetics 48, 119–134 (1947).Google Scholar
  8. Callot, J.: Étude sur quelques souches de Culex pipiens (sensu lato) et sur leurs hybrides. Ann. de Parasitol. 22, 380–393 (1947).Google Scholar
  9. Le rapport trompe/palpes dans les biotypes du complexe Culex pipiens et leurs hybrides. Ann. de Parasitol. 29, 131–134 (1954).Google Scholar
  10. Étude sur les hybrides des biotypes de Culex pipiens Linné. Ann. de Parasitol. 30, 363–373 (1955).Google Scholar
  11. Caspari, E.: Cytoplasmic inheritance. Adv. Genet. 2, 1–66 (1948).Google Scholar
  12. Darlington, C. D.: Heredity, development and infection. Nature (Lond.) 154, 164–169 (1944).Google Scholar
  13. Dobrotworsky, N. V.: The Culex pipiens group in south-eastern Australie. IV. Crossbreeding experiments within the Culex pipiens group. Proc. Linnean Soc. N.S. Wales 80, 33–43 (1955).Google Scholar
  14. Dobzhansky, Th., and B. Spassky: Intersexes in Drosophila pseudoobscura. Proc. Nat. Acad. Sci. U.S.A. 27, 556–562 (1941).Google Scholar
  15. Downs, W. G., and R. H. Baker: Experiments in crossing Aedes (Stegomyia) aegypti L. and Aedes (Stegomyia) albopictus Skuse. Science (Lancaster, Pa.) 109, 200–201 (1949).Google Scholar
  16. Ghelelovitch, S.: Étude génétique de deux caractéres de pigmentation chez Culex autogenicus Roubaud. Bull. Biol. 84, 217–224 (1950).Google Scholar
  17. Sur le déterminisme génétique de la stérilité dans les croisements entre différentes souches de Culex autogenicus Roubaud. C.r. Acad. Sci. Paris 234, 2386–2388 (1952).Google Scholar
  18. Gilchrist, B. H., and J. B. S. Haldane: Sex linkage and sex determination in a mosquito, Culex molestus. Hereditas (Lund) 33, 175–190 (1947).Google Scholar
  19. joyGoldschmidt, R., u. joyK. Katsuki: Erblicher Gynandromorphismus und somatische Mosaikbildung bei Bombyx mori L. Biol. Zbl. 47 (1927).Google Scholar
  20. Zweite Mitteilung über erblichen Gynandromorphismus bei Bombyx mori L. Biol. Zbl. 48, 39–42 (1928a).Google Scholar
  21. Cytologie des erblichen Gynandromorphismus von Bombyx mori L. Biol. Zbl. 48, 685–699 (1928b).Google Scholar
  22. Vierte Mitteilung über erblichen Gynandromorphismus und somatische Mosaikbildung bei Bombyx mori L. Biol. Zbl. 51, 58–74 (1931).Google Scholar
  23. Hovanitz, W.: Physiological factors which influence the infection of Aedes aegypti with Plasmodium gallinaceum. Amer. J. Hyg. 45, 67–81 (1947).Google Scholar
  24. Huff, C. G.: Studies on the infectivity of Plasmodia of birds for mosquitoes with special reference to the problem of immunity in the mosquito. Amer. J. Hyg. 7, 706–734 (1927).Google Scholar
  25. Ovulation requirements of Culex pipiens L. Biol. Bull. 59, 347–350 (1929).Google Scholar
  26. The effects of selection upon susceptibility to bird malaria in Culex pipiens. Ann. Trop. Med. 23, 427–442 (1929a).Google Scholar
  27. Color inheritance in larvae of Culex pipiens Linn. Biol. Bull. 57, 172–175 (1929b).Google Scholar
  28. The inheritance of natural immunity to Plasmodium cathemerium in two species of Culex. J. Prevent. Med. 5, 249–259 (1931).Google Scholar
  29. Comparative studies on susceptible and insusceptible Culex pipiens in relation to infections with Plasmodium cathemerium and Plasmodium relictum. Amer. J. Hyg. 19, 123–147 (1934).Google Scholar
  30. Natural immunity and susceptibility of culicine mosquitoes to avian malaria. Amer. J. Trop. Med. 15, 427–434 (1935).Google Scholar
  31. Jeffery, G. M.: Investigation of the factors influencing the mosquito transmission of Plasmodium lophurae. Diss. Baltimore 1944.Google Scholar
  32. Jobling, B.: On two subspecies of Culex pipiens L. (Diptera). Trans. Roy. Entomol. Soc. Lond. 87, 193–216 (1938).Google Scholar
  33. Katsuki, K.: Untersuchungen über erblichen Gynandromorphismus und somatische Mosaikbildungen bei Bombyx mori L. I. Teil. Zool. Jb., Abt. allg. Zool. u. Physiol. 44, 1–84 (1927).Google Scholar
  34. Weitere Versuche über erbliche Mosaikbildung und Gynandromorphismus bei Bombyx mori L. Biol. Zbl. 48, 43–49 (1928).Google Scholar
  35. Kitzmiller, J. B.: Mosquito genetics and cytogenetics. Rev. brasil. Malariol. e D. Trop. 5, 285–359 (1953).Google Scholar
  36. Kitzmiller, J. B., and C. C. Clark: Salivary gland chromosomes of Culex mosquitoes. Genetics 37, 596 (1952).Google Scholar
  37. Knight, K. L.: A review of the Culex pipiens complex in the Mediterranean subregion (Diptera, Culicidae). Trans. Roy. Entomol. Soc. Lond. 102, 354–364 (1951).Google Scholar
  38. Hybridization experiments with Culex pipiens and C. quinquefasciatus (Diptera, Culicidae). Mosquito News 13, 110–115 (1953).Google Scholar
  39. Kühn, A., u. D.-L. Woywod: Unregelmäßige Chromosomenverteilung durch eine Mutation bei Ephestia kühniella Z. Z. Naturforsch. 1, 38–44 (1946).Google Scholar
  40. Laven, H.: Crossing experiments with Culex strains. Evolution 5, 370–375 (1951a).Google Scholar
  41. Untersuchungen und Deutungen zum Culex-pipiens-Komplex. Trans. Roy. Entomol. Soc. Lond. 102, 365–368 (1951b).Google Scholar
  42. Reziprok unterschiedliche Kreuzbarkeit von Stechmücken (Culicidae) und ihre Deutung als plasmatische Vererbung. Z. Vererbungslhre 85, 118–136 (1953).Google Scholar
  43. Erbliche Intersexualität bei Culex pipiens. Naturwiss. 42, 517 (1955).Google Scholar
  44. Laven, H., u. P. S. Chen: Genetische und papierchromatographische Untersuchungen an einer letalen Mutante von Culex pipiens. Z. Naturforsch. 11b, 273–276 (1956).Google Scholar
  45. Lebedeff, G. A.: A study of intersexuality in Drosophila virilis. Genetics 24, 553–586 (1939).Google Scholar
  46. Lederberg, J.: Cell genetics and hereditary symbiosis. Physiologic. Rev. 32, 403–430 (1952).Google Scholar
  47. L'Héritier, P.: Les virus intégrés et l'unité cellulaire. Ann. de Biol. 31, 481–496 (1955).Google Scholar
  48. Lichtenstein, E. P.: Growth of Culex molestus under sterile conditions. Nature (Lond.) 162, 227 (1948).Google Scholar
  49. MacGregor, M. E.: The occurrence of Roubaud's race autogène in a German strain of Culex pipiens in England. With notes on rearing and bionomics. Trans. Roy. Soc. Trop. Med. Lond. 26, 307–314 (1932).Google Scholar
  50. Maramorosch, K.: Mechanical transmission of curly top virus to its insect vector by needle inoculation. Virology 1, 286–300 (1955).Google Scholar
  51. joyMarshall, J. F.: The British mosquitoes. London 1938.Google Scholar
  52. Marshall, J. F., and J. Staley: Some notes regarding the morphological and biological differentiation of Culex pipiens L. and Culex molestus Forskăl (Diptera, Culicidae). Proc. Roy. Entomol. Soc. Lond. A 12, 17–26 (1937).Google Scholar
  53. Mattingly, P. F., L. E. Rozeboom, K. L. Knight, H. Laven, F.H. Drummond, S. R. Christophers and P. G. Shute: The Culex pipiens complex. Trans. Roy. Entomol. Soc. Lond. 102, 331–382 (1951).Google Scholar
  54. joycMayr, E.: Systematics and the origin of species. New York 1942.Google Scholar
  55. Metz, C. W.: Chromosome behavior, inheritance and sex determination in Sciara. Amer. Naturalist 72, 485–520 (1938).Google Scholar
  56. Michaelis, P.: Über die allgemeine Verbreitung plasmatischer Erbträger und ihre Bedeutung für die Entwicklungsphysiologie. Ber. dtsch. bot. Ges. 64, 197–208 (1951).Google Scholar
  57. Der Nachweis der Plasmavererbung. (Das Prinzip und seine praktische Durchführung beim Weidenröschen). Acta biotheor. (Leiden) 11, 1–26 (1953).Google Scholar
  58. Micks, D. W.: Investigations on the mosquito transmission of Plasmodium elongatum Huff, 1930. J. Nat. Malaria Soc. 8, 206–218 (1949).Google Scholar
  59. Moffett, A. A.: The origin and behaviour of chiasmata. XIII. Diploid and tetraploid Culex pipiens. Cytologia (Tokyo) 7, 184–197 (1936).Google Scholar
  60. joyNewby, W. W.: A study of intersexes produced by a dominant mutation in Drosophila virilis, Blanco stock. Univ. Texas Publ. No 4228, 1942, 113–145.Google Scholar
  61. Oehlkers, F.: Neue Überlegungen zum Problem der außerkaryotischen Vererbung. Z. Vererbungslehre 84, 213–250 (1952).Google Scholar
  62. Pätau, K.: Cytologischer Nachweis einer positiven Interferenz über das Centromer. Chromosoma 2, 36–63 (1941).Google Scholar
  63. Patterson, J. T.: A new type of isolating mechanism in Drosophila. Proc. Nat. Acad. Sci. U.S.A. 32, 202–208 (1946).Google Scholar
  64. Perry, W. J.: Biological and crossbreeding studies on Aedes hebrideus and Aedes pernotatus. Ann. Entomol. Soc. Amer. 43, 123–136 (1950).Google Scholar
  65. Qutubuddin, M.: The emergence and sex ratio of Culex fatigans Wied. (Diptera, Culicidae) in laboratory experiments. Bull. Entomol. Res. 43, 549–565 (1952).Google Scholar
  66. Roubaud, E.: Cycle autogène d'attente et générations hivernales suractives inapparentes chez le moustique commun, Culex pipiens L. C. r. Acad. Sci. Paris 188, 735–738 (1929).Google Scholar
  67. Sur l'existence de races biologiques génétiquement distinctes chez le moustique commun Culex pipiens. C. r. Acad. Sci. Paris 191, 1386–1388 (1930).Google Scholar
  68. Essai synthétique sur la vie du moustique commun. Ann. des Sci. natur. Zool. 16, 5–168 (1933).Google Scholar
  69. Phénomènes d'amixie dans les intercroisements de souches géographiques, indifférenciées extérieurement, du Moustique commun tropical Culex fatigans Wied. C. r. Acad. Sci. Paris 242, 1557–1559 (1956).Google Scholar
  70. Simonetti, A.: Studio sulla possibilita d'incrocio fra Culex pipiens L. e Culex autogenicus. R. Riv. Biol. 44, 117–135 (1952).Google Scholar
  71. Smith-White, S.: A note an non-reciprocal fertility in matings between subspecies of mosquitoes. Proc. Linnean Soc. N. S. Wales 75, 279–281 (1950).Google Scholar
  72. Smith-White, S., and A. R. Woodhill: The nature and significance of non-reciprocal fertility in Aedes scutellaris and other mosquitoes. Proc. Linnean Soc. N. S. Wales 79, 163–176 (1955).Google Scholar
  73. Sonneborn, T. M.: Beyond the gene. Amer. Sci. 37, 33–59 (1949).Google Scholar
  74. Heredity, development and evolution in Paramecium. Nature (Lond.) 175, 1100 (1955).Google Scholar
  75. Spencer, W. P.: Mutations in wild populations of Drosophila. Adv. Genet. 1, 359–402 (1947).Google Scholar
  76. Stevens, N. M.: The chromosomes in the germ-cells of Culex. J. of Exper. Zool. 8, 207–225 (1910).Google Scholar
  77. Further studies on the heterochromosomes in mosquitoes, Biol. Bull. 20, 109–120 (1911).Google Scholar
  78. joyStone, W. S.: The I× B factor and sex determination. Univ. Texas Publ. No 4228, 1942, 146–152.Google Scholar
  79. Sturtevant, A. H.: Intersexes in Drosophila simulans. Science (Lancaster, Pa.) 51, 325–327 (1920).Google Scholar
  80. Sundararaman, S.: Biometrical studies on intergradation in the genitalia of certain populations of Culex pipiens and Culex quinquefasciatus in the Unites States. Amer. J. Hyg. 50, 307–314 (1949).Google Scholar
  81. Suomalainen, E.: Parthenogenesis in animals. Adv. Genetics 3, 193–253 (1950).Google Scholar
  82. Sutton, E.: Salivary gland type chromosomes in mosquitoes. Proc. Nat. Acad. Sci. U.S.A. 28, 268–272 (1942).Google Scholar
  83. Tate, P., and M. Vincent: The susceptibility of autogenous and anautogenous races of Culex pipiens to infection with avian malaria (Plasmodium relictum). Parasitology 26, 512–522 (1934).Google Scholar
  84. The biology of autogenous and anautogenous races of Culex pipiens L. (Diptera, Culicidae). Parasitology 28, 115–145 (1936).Google Scholar
  85. Toumanoff, C.: Essais préliminaires d'intercroisement de St. albopicta Skuse avec St. argentea Poiret s. fasciata Théob. Bull. Soc. méd.-chir. Indochine 51, 964–970 (1937).Google Scholar
  86. L'intercroisement de l'Aedes (Stegomyia) aegypti L. et Aedes (Stegomyia) albopictus Skuse. Observations sur la mortalit%e dans la descendances des générations hybrides F1 et F2 de ses insectes. Bull. Soc. Path. exot. Paris 43, 234–240 (1950).Google Scholar
  87. Trager, W.: A strain of the mosquito Aedes aegypti selected for susceptibility to the avian malaria parasite Plasmodium lophurae. J. of Parasitol. 28, 457–465 (1942).Google Scholar
  88. Vermeil, C.: Contribution à l'étude d'un biotype tunesien du moustique commun, Culex pipiens L. Bull. Soc. Path. exot. Paris 45, 546–554 (1952).Google Scholar
  89. Vincent, M.: Some observations on the biology of a Hungarian strain of Culex pipiens L. Arb. ung. biol. Forsch.-Inst. 6, 119–122 (1933).Google Scholar
  90. joyWeyer, F.: Versuche zur Eiablage ohne vorherige Blutnahrung bei Culex pipiens L. Verh. dtsch. zool. Ges. 1934, 146–152.Google Scholar
  91. Die Rassenfrage bei Culex pipiens in Deutschland. Z. Parasitenkde 8, 104–115 (1935).Google Scholar
  92. Kreuzungsversuche bei Stechmücken (Culex pipiens und Culex fatigans). Arb. physiol. angew. Entomol., Berlin 3, 202–208 (1936).Google Scholar
  93. Whiting, P. W.: The chromosomes of the common house mosquito, Culex pipiens L. J. of Morph. 28, 523–577 (1917).Google Scholar
  94. Woodhill, A. R.: A note on experimental crossing of Aedes (Stegomyia) scutellaris scutellaris Walker and Aedes (Stegomyia) scutellaris katherinensis Woodhill (Diptera, Culicidae). Proc. Linnean Soc. N. S. Wales 74, 224–226 (1949).Google Scholar
  95. Further notes on experimental crossing within the Aedes scutellaris group of species (Diptera, Culicidae). Proc. Linnean Soc. N. S. Wales 75, 251–253 (1950).Google Scholar

Copyright information

© Springer-Verlag 1957

Authors and Affiliations

  • Hannes Laven
    • 1
  1. 1.Aus dem Max-Planck-Institut für Biologie, Abt. KühnTübingen

Personalised recommendations