Skip to main content
Log in

Polysynthetically-twinned structures of enstatite and wollastonite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Crystal structures of clinoenstatite, orthoenstatite, wollastonite-1T and wollastonite-2M (parawollastonite) were refined to an R factor 3–4 percent level. Molar volumes at room temperature are 31.270(15), 31.315(8), 39.842(5) and 39.901(10) cm3/MSiO3, in the above-mentioned order, indicating that one-layer polytypes (clinoenstatite and wollastonite-1T) are stable at higher pressures than two-layer polytypes (orthoenstatite and wollastonite-2M). The polytypic relation of the enstatite polytypes can be described by four twinning operations — b glide ∥ to (110), a glide ∥ to (001), twofold screw axis ∥ to a (of orthoenstatite) and a twofold screw axis ∥ to c. For the wollastonite polytypes, twinning operations are twofold screw axis ∥ to b and a glide ∥ to (010). Structural adjustments after twinning are not necessarily the largest at the twin boundary (true in enstatite but not so in wollastonite). In both cases octahedral sites that involve bridging oxygens tend to show relatively large changes. Lattice strain ellipsoids associated with twinning are also different for enstatite and wollastonite, which implies that wollastonite may react differently from enstatite to non-hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey SW (1977) Report of the I.M.A.-I.U.Cr. joint committee on nomenclature. Am Mineral 62:411–415

    Google Scholar 

  • Bertaut EF (1953) Ferroelectric and high dielectric crystals: contribution to the theory of fields, potentials and energies in periodic lattices. Air Force Tech Rep 19:35

    Google Scholar 

  • Brown WL (1972) La symétrie et les solutions solides des clinopyroxenes. Bull Soc France Mineral Cristallogr 95:574–582

    Google Scholar 

  • Buerger MJ (1956) The arrangement of atoms in the wollastonite group of metasilicates. Proc Nat Acad Sci 42:113–116

    Google Scholar 

  • Buerger MJ, Prewitt CT (1961) The crystal structure of wollastonite and pectolite. Proc Nat Acad Sci 47:1884–1888

    Google Scholar 

  • Burnham CW (1962) Lattice constant refinement. Carnegie Inst Washington Year 61:132–135

    Google Scholar 

  • Burnham CW (1966) Computation of absorption correction and the significance of end effect. Am Mineral 51:159–167

    Google Scholar 

  • Burnham CW (1967) Ferrosilite. Carnegie Inst Washington Yearb 65:285–290

    Google Scholar 

  • Burnham CW, Ohashi Y, Hafner SS, Virgo D (1971) Cation distribution and atomic thermal vibrations in an iron-rich orthopyroxene. Am Mineral 56:850–876

    Google Scholar 

  • Coe RS (1970) The thermodynamic effect of shear stress on the ortho-clino inversion in enstatite and other coherent phase transitions characterized by a finite simple shear. Contrib Mineral Petrol 26:247–264

    Google Scholar 

  • Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: Mechanism and potential application. Contrib Mineral Petrol 52:29–55

    Google Scholar 

  • Coe RS, Muller WF (1970) Crystallographic orientation of clinoenstatite produced by deformation of orthoenstatite. Science 180:64–66

    Google Scholar 

  • Finger LW, Hadidiacos CG, Ohashi Y (1973) A computer-automated, single-crystal X-ray diffractometer. Carnegie Inst Washington Yearb 72:694–699

    Google Scholar 

  • Finger LW, Prince E (1975) A system of Fortran IV computer programs for crystal structure computations. Nat Bur Stand (US) Tech Note 854:128

    Google Scholar 

  • Guggenheim S (1978) Polytype transformations in experimentally deformed wollastonite. Am Mineral 63:1260–1263

    Google Scholar 

  • Hawthorne FC, Ito J (1977) Synthesis and crystal-structure refinement of transition-metal orthopyroxenes. I: Orthoenstatite and (Mg,Mn,Co) orthopyroxene. Can Mineral 15:321–338

    Google Scholar 

  • Henmi C, Kawahara A, Henmi K, Kusachi I, Takeuchi Y (1983) The 3T, 4T and 5T polytypes of wollastonite from Kushiro, Hiroshima Prefecture, Japan. Am Mineral 68:15–163

    Google Scholar 

  • Henmi C, Kusachi I, Kawahara A, Henmi K (1978) 7T wollastonite from Fuka, Okayama Prefecture. Mineral J (Japan) 9:169–181

    Google Scholar 

  • Hutchison JL, McLaren AC (1976) Two-dimensional lattice images of stacking disorder in wollastonite. Contrib Mineral Petrol 55:303–309

    Google Scholar 

  • Hutchison JL, McLaren AC (1977) Stacking disorder in wollastonite and its relationship to twinning and the structure of parawollastonite. Contrib Mineral Petrol 61:11–13

    Google Scholar 

  • International Tables for X-ray Crystallography, Vol. III (1968) Kynoch Press

  • Ito J (1975) High temperature solvent growth of orthoenstatite, MgSiO3, in air. Geophys Res Lett 2:533–536

    Google Scholar 

  • Ito T (1935) On the symmetry of the rhombic pyroxenes. Z Kristallogr 90:151–162

    Google Scholar 

  • Ito T (1950) X-ray studies on polymorphism. Maruzen, Tokyo

    Google Scholar 

  • Ito T, Sadanaga R, Takéuchi Y, Tokonami M (1969) The existence of partial mirrors in wollastonite. Proc Japan Acad 45:913–918

    Google Scholar 

  • Jefferson DA, Bown MG (1973) Polytypism and stacking disorder in wollastonite. Nature (London) Phys Sci 245:43–44

    Google Scholar 

  • Jefferson DA, Thomas JM, Smith DJ, Camps RA, Catto CJD, Cleaver JRA (1979) Individual silicate chains in wollastonite by high resolution electron microscopy. Nature (London) Phys Sci 281:51–52

    Google Scholar 

  • Matsumoto T (1974) Possible structure types derived from Pbca-orthopyroxene. Mineral J (Japan) 7:374–383

    Google Scholar 

  • Matsumoto T, Banno S (1970) P2/n-omphacite and the possible space groups of clinopyroxenes. IMA-IAGOD Meeting 1970, Collected Abst. 171

  • Morimoto N, Appleman DE, Evans HT, Jr (1960) The crystal structure of clinoenstatite and pigeonite. Z Kristallogr 114:120–147

    Google Scholar 

  • Morimoto N, Koto K (1969) The crystal structure of orthoenstatite. Z Kristallogr 129:65–83

    Google Scholar 

  • Muller WF (1976) On stacking disorder and polytypism in pectolite and serandite. Z Kristallogr 144:401–408

    Google Scholar 

  • Munoz JL (1968) Effect of shearing on enstatite polymorphism. Carnegie Inst Washington Yearb 66:369–370

    Google Scholar 

  • Ohashi Y (1973) High-temperature structural crystallography of synthetic clinopyroxenes (Ca, Fe)SiO3. Ph D Thesis Harvard Univ

  • Ohashi Y (1976) Lattice energy of some silicate minerals and the effect of oxygen bridging in relation to crystallization sequence. Carnegie Inst Yearb 75:644–648

    Google Scholar 

  • Ohashi Y, Burnham CW (1973) Clinopyroxene lattice deformations: the roles of chemical substitution and temperature. Am Mineral 58:843–849

    Google Scholar 

  • Ohashi I, Finger LW (1973) Lattice deformations in feldspars. Carnegie Inst Washington Yearb 72:569–573

    Google Scholar 

  • Ohashi Y, Finger LW (1974a) A lunar pigeonite: crystal structure of primitive-cell domains. Carnegie Inst Washington Yearb 73:525–531

    Google Scholar 

  • Ohashi Y, Finger LW (1974b) Symmetry reduction and twinning relationships in clino- and ortho-pyroxenes. Carnegie Inst Washington Yearb 73:525–531

    Google Scholar 

  • Ohashi Y, Finger LW (1978) The role of octahedral cations in pyroxenoid crystal chemistry. I. bustamite, wollastonite, and the pectolite-schizolite-serandite series. Am Mineral 63:274–288

    Google Scholar 

  • Prewitt CT, Buerger MJ (1963) Comparison of the crystal structures of wollastonite and pectolite. Mineral Soc Am Spec Paper 1:293–302

    Google Scholar 

  • Riecker RE, Rooney TP (1967) Deformation and polymorphism of enstatite under shear stress. Geol Soc Am Bull 78:1054

    Google Scholar 

  • Sasaki S, Takéuchi Y, Fujino K, Akimoto S (1982) Electron-density distributions of three orthopyroxenes. Mg2Si2O6, Co2Si2O6 and Fe2Si2O6. Z Kristallogr 158:279–297

    Google Scholar 

  • Smyth JR (1974) Experimental study of the polymorphism of enstatite. Am Mineral 59:345–352

    Google Scholar 

  • Takéuchi Y, Haga N (1971) Structure transformation of trioctahedral sheet silicates — slip mechanisms of octahedral sheet and polytypic changes of micas. Mineral Soc Japan Spec Pap 1:74–87 [Proc IMA-IMGOD Meeting '70, IMA vol.]

    Google Scholar 

  • Tolliday J (1958) Crystal structure of beta-wollastonite. Nature 182:1012–1013

    Google Scholar 

  • Trojer FJ (1968) The crystal structure of parawollastonite. Z Kristallogr 127:291–308

    Google Scholar 

  • Veblen DR, Buseck PR (1979) Chain-width order and disorder in biopyriboles. Am Mineral 64:687–700

    Google Scholar 

  • Veblen DR, Buseck PR (1980) Microstructures and reaction mechanisms in biopyriboles. Am Mineral 65:599–623

    Google Scholar 

  • Veblen DR, Buseck PR (1981) Hydrous pyriboles and sheet silicates in pyroxenes and uralites: intergrowth microstructures and reaction mechanisms. Am Mineral 66:1107–1134

    Google Scholar 

  • Vincent MG, Jeffery JW Jr (1979) The relation between the structures proposed for parawollastonite, beta-CaO.SiO2. Acta Crystallogr A35:938–941

    Google Scholar 

  • Warren BE, Modell DI (1930) The structure of enstatite, MgSiO3. Z Kristallogr 75:1–14

    Google Scholar 

  • Wenk H-R (1969) Polymorphism of wollastonite. Contrib Mineral Petrol 22:238–247

    Google Scholar 

  • Wenk H-R, Muller WF, Liddell NA, Phakey PP (1976) Polytypism in wollastonite. In HR Wenk, et al. (eds) Electron Microscopy in Mineralogy, Springer, Berlin Heidelberg, New York, pp 324–331

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohashi, Y. Polysynthetically-twinned structures of enstatite and wollastonite. Phys Chem Minerals 10, 217–229 (1984). https://doi.org/10.1007/BF00309314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309314

Keywords

Navigation