Skip to main content
Log in

Relations between the physiology of attention and the physiology of consciousness

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

Consciousness, analyzed as a neurological system like any other, has four functions. The first is planning and setting up behavioral plans or schemata in advance of their execution in behavior. This function requires an internal record of the schema with its subordinate parts and of the current status of its execution. The second function is execution, which requires giving a priority to each schema and executing the one with the highest priority. The third is directing two kinds of attention: outside-in attention changes priorities as a result of demands from the environment; inside-out attention directs behavior toward particular aspects of the environment on the basis of the needs of the current schema. Fourth is retrieving long-term episodic memories, which can be used only in planning, executing, and attention. Aspects of these functions can be seen in neurophysiology, especially in frontal and temporal lobes. Psychophysical analysis of visual functions shows that most information processing proceeds without consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Arthur, D. L., & Starr, A. (1984). Task-relevant late positive component of the auditory event related potential in monkeys resembles P300 in humans. Science, 223, 186–188.

    Google Scholar 

  • Bizzi, E. (1968). Discharge of frontal eye field neurons saccadic and following eye movements in unanesthetized monkeys. Experimental Brain Research, 6, 69–80.

    Google Scholar 

  • Bizzi, E., & Schiller, P. (1970). Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Experimental Brain Research, 10, 151–158.

    Google Scholar 

  • Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.

    Google Scholar 

  • Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception & Psychophysics, 29, 336–342.

    Google Scholar 

  • Bridgeman, B., Lewis, S., Heit, G., & Nagle, M. (1979). The relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5, 692–700.

    Google Scholar 

  • Bridgeman, B., & Stark, L. (1979). Omnidirectional increase in threshold for image shifts during saccadic eye movements. Perception & Psychophysics, 25, 241–243.

    Google Scholar 

  • Bridgeman, B., & Staggs, D. (1982). Plasticity in human blind-sight. Vision Research 22, 1199–1203.

    Google Scholar 

  • Brodmann, K. (1912). Neue Ergebnisse über die vergeleichende histologische Lokalisation der Großhirnrinde mit besonderer Berücksichtigung des Stirnhirns. Anatomischer Anzeiger, 41 (Suppl.), 157–216.

    Google Scholar 

  • Brune, F., & Lücking, C. H. (1969). Oculomotorik, Bewegungs-wahrnehmung und Raumkonstanz der Sehdinge. Der Nervenarzt, 40, 413–421.

    Google Scholar 

  • Creutzfeldt, O. (1983). Cortex cerebri. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Ettlinger, G., & Wegener, J. (1958). Somesthetic alternation, discrimination and orientation after frontal and parietal lesions in monkeys. Quarterly Journal of Experimental Psychology, 10, 177–186.

    Google Scholar 

  • Festinger, L., & Canon, L. K. (1965). Information about spatial location based on knowledge about efference. Psychological Review, 72, 373–384.

    Google Scholar 

  • Fischer, B. (1986). The role of attention in the preparation of visually guided movements in monkey and man. Psychological Research, 48, 251–257.

    Google Scholar 

  • Fuster, J. M. (1980). The prefrontal cortex. New York: Raven Press

    Google Scholar 

  • Goldstein, K. (1944) The mental changes due to frontal lobe damage. Journal of Psychology, 17, 187–208.

    Google Scholar 

  • Hallet, P. E., & Lightstone A. D. (1976). Saccadic eye movements towards stimuli triggered during prior saccades. Vision Research, 16, 99–106.

    Google Scholar 

  • Harlow, H., & Dagnon, J. (1943). Problem solution by monkeys following bilateral removal of prefrontal areas: I. Discrimination and discrimination reversal. Journal of Experimental Psychology, 32, 351–356.

    Google Scholar 

  • Harlow, H., & Settlage, P. (1948). Effect of extirpation of frontal areas upon learning performance of monkeys. Research Publication Association for Nervous and Mental Disease, 27, 446–459.

    Google Scholar 

  • Hillyard, S., & Picton, T. (1979). Event-related brain potentials and selective information processing in man. In J. Desmedt (Ed.) Cognitive components in cerebral event-related potentials and selective attention: Vol. 6. Progress in clinical neurophysiology (pp 1–52).

  • Iverson, S. D. (1967). Tactile learning and memory in baboons after temporal and frontal lesions. Experimental Neurology, 18, 228–238.

    Google Scholar 

  • Jacobsen, C. F. (1935). Functions of the frontal association area in primates. Archives of Neurology and Psychiatry, 33, 558–569.

    Google Scholar 

  • Jacobsen, C. F. (1936). Studies of cerebral function in primates: I. The functions of the frontal association areas in monkeys. Comparative Psychology Monographs, 13, 3–60.

    Google Scholar 

  • Kennard, M. (1939). Alterations in response to visual stimuli following lesions of frontal lobe in monkeys. Archives of Neurology and Psychiatry, 41, 1153–1165.

    Google Scholar 

  • Latto, R. (1978). The effects of bilateral frontal eye-field lesions on the learning of a visual search task by rhesus monkeys. Brain Research, 147, 370–376.

    Google Scholar 

  • Latto, R., & Cowey, A. (1971). Fixation changes after frontal eye-field lesions in monkeys. Brain Research, 30, 25–36.

    Google Scholar 

  • Libet, B. (1973). Electrical stimulation of cortex in human subjects, and conscious sensory aspects. In A. Iggo (Ed.) Handbook of sensory physiology: Vol. II Somatosensory system. Berlin: Springer-Verlag.

    Google Scholar 

  • Libet, B., Alberts, W. W., Wright, E. W. Jr, & Feinstein, E. (1967). Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158, 1597–1600.

    Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man. London: Tavistock.

    Google Scholar 

  • Luria, A. R. (1970). Traumatic aphasia. The Hague, Mouton.

    Google Scholar 

  • Lynch, J. C., & Graybiel, A. (1983). Comparison of afferents traced to the superior colliculus from the frontal eye fields and from two sub-regions of area 7 of the rhesus monkey. Neuroscience Abstracts, 9, 750.

    Google Scholar 

  • Mach, A (1970). An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception & Psychophysics, 8, 291–289.

    Google Scholar 

  • Mohler, C., Goldberg, M. E., & Wurtz, R. (1973). Visual receptive fields of frontal eye field neurons. Brain Research, 61, 385–389.

    Google Scholar 

  • Niki, H., & Watenabe, M. (1976). Prefrontal unit activity and delayed response: Relation to cue location versus direction of response. Brain Research, 105, 79–88.

    Google Scholar 

  • Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control of behavior. Center for Human Information Processing Technical Report 8006.

  • Picton, T., Hillyard, S., Krausz, H., & Galambos, R. (1974). Human auditory evoked potentials. I. Evaluation of components. Electroencephalography and Clinical Neurophysiology, 36, 179–190.

    Google Scholar 

  • Pribram, K. H. (1967). The limbic systems, efferent control of neural inhibition and behavior. In W. Adey and T. Tokizane (eds) Progress in Brain Research, Vol. 27 (pp. 318–336) Amsterdam: Elsevier.

    Google Scholar 

  • Prinz, W. (1986). Continuous selection. Psychological Research, 48, 231–238.

    Google Scholar 

  • Ritter, W., & Vaughan, H. (1969). Averaged evoked responses in vigilance and discrimination: A reassessment. Science, 164, 326–328.

    Google Scholar 

  • Ryle, G. (1949). The concept of mind. New York: Barnes and Noble.

    Google Scholar 

  • Schiller, P. H., True, S., & Conway, J. (1980). Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology, 44, 1175–1189.

    Google Scholar 

  • Schlag-Rey, M., & Lindsley, D. (1970). Effect of prefrontal lesions on trained anticipatory visual attending in cats. Physiology and Behavior 5, 1033–1041.

    Google Scholar 

  • Schlag, J., & Schlag-Rey, M. (1985). Unit activity related to spontaneous saccades in dorsomedial cortex of monkey. Experimental Brain Research, 58, 208–211.

    Google Scholar 

  • Shallice, T. (1972). Dual functions of consciousness. Psychological Review 79, 383–393.

    Google Scholar 

  • Shallice, T. (1978). The dominant action system: An information-processing approach to consciousness. In Pope, K and Singer, J. E. (eds) The flow of conscious experience. New York: Plenum.

    Google Scholar 

  • Stamm, J., & Rosen, S. (1975). Dissociations within prefrontal cortex between intratrial cue-directional and mnemonic processes in delayed response. In S. Kondo, M. Kawai, A. Ehara & S. Kawamura (Eds.) Symposia of the Fifth Congress of the International Primatological Society (pp. 459–474). Tokyo: Japan Science Press.

    Google Scholar 

  • Shallice, T. (1972). Dual functions of consciousness. Psychological Review, 79, 383–393.

    Google Scholar 

  • Shallice, T. (1978). The dominant action system: An information-processing approach to consciousness. In K. Pope & J. E. Singer (Eds.), The flow of conscious experience. New York: Plenum.

    Google Scholar 

  • Teuber, H. L. (1972). Unity and diversity of frontal lobe functions. Acta Neurobiologica Experimentia, 32, 615–656.

    Google Scholar 

  • Wagman, I., & Mehler, W. (1972). Psychology and anatomy of the corticooculomotor mechanism. Progress in Brain Research, 37, 619–635.

    Google Scholar 

  • Wallach, H., & Lewis, C. (1965). The effect of abnormal displacement of the retinal image during eye movements. Perception & Psychophysics, 1, 25–29.

    Google Scholar 

  • Watson, R. T., Miller, B. D., & Heilman, K. (1978). Nonsensory neglect. Annals of Neurology, 3, 505–508.

    Google Scholar 

  • Weiskrantz, L., Warrington, E., Sanders, M., & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97, 709–728.

    Google Scholar 

  • Wundt, W. (1896; 1910). Principles of Physiological Psychology. London: Swan Sonnenschein.

    Google Scholar 

  • Wurtz, R. H., & Mohler, C. W. (1976). Enhancement of visual responses in monkey striate cortex and frontal eye fields. Journal of Neurophysiology, 39, 766–772.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridgeman, B. Relations between the physiology of attention and the physiology of consciousness. Psychol. Res 48, 259–266 (1986). https://doi.org/10.1007/BF00309090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309090

Keywords

Navigation