Skip to main content
Log in

The thermal expansion of anhydrite to 1000° C

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermal expansion of anhydrite, CaSO4, has been measured from 22° to 1,000° C by X-ray diffraction, using the Guinier-Lenné heating powder camera. The heating patterns were calibrated with Guinier-Hägg patterns at 25° C, using quartz as internal standard. Heating experiments were run on natural anhydrite (Bancroft, Ontario), which at room temperature has lattice constants in close agreement with those of synthetic material. The orthorhombic unit cell at 22° C (space group Amma) has a=7.003 (1) Å, b=6.996 (2) Å and c=6.242 (1) Å, V=305.9 (2) Å3. At room temperature, the thermal expansion coefficients α and β (α in °C−1×104, β in °C−2×108) are for a, 0.10, −0.69; for b, 0.08, 0.19; for c, 0.18, 1.60; for V, 0.37, 1.14. Second-order coefficients provide an excellent fit over the whole range to 1,000° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleman, D.E., Evans, H.T., Jr.: Job 9214: indexing and least squares analysis of powder diffraction data. U.S. Dept. Commerce Nat. Tech. Inf. Serv. (Springfield, VA 22151), PB216188 (1973)

  • Bensted, J.: High-temperature anhydrite (α-calcium sulfate). Zem.-Kalk-Gyps. 1975, 401–402 (1975)

    Google Scholar 

  • Grahmann, W.: Über Barytocölestin und das Verhältnis von Anhydrit zu Cölestin und Baryt. N. Jb. Mineral. 1920, 1–23 (1920)

    Google Scholar 

  • Hägg, G., Ersson, N.-O.: An easily adjustable Guinier camera of highest precision. Acta Cryst. A25 Suppl., S 64 (1969)

    Google Scholar 

  • Hawthorne, F.C., Ferguson, R.B.: Anhydrous sulfates. II. Refinement of the crystal structure of anhydrite. Can. Mineral. 13, 289–292 (1975)

    Google Scholar 

  • Khan, A.A.: Computer simulation of thermal expansion of noncubic crystals: forsterite, anhydrite and scheelite. Acta Cryst. A32, 11–16 (1976)

    Google Scholar 

  • Lenné, H.-U.: Die Böhmite-Entwässerung, verfolgt mit einer neuen Röntgenheizkamera. Z. Krist. 116, 190–209 (1961)

    Google Scholar 

  • Morikawa, H., Minato, I., Tomita, T., Iwai, S.: Anhydrite: a refinement. Acta Cryst. B31, 2164–2165 (1975)

    Google Scholar 

  • Potter, R.W., II, Evans, H.T., Jr.: Definitive X-ray powder data for covellite, anilite, djurleite, and chalcocite. US Geol. Surv. J. Res. 4, 205–212 (1976)

    Google Scholar 

  • Skinner, B.J.: Thermal expansion. Geol. Soc. Am. Mem. 97, 75–96 (1966)

    Google Scholar 

  • Swanson, H.E., Fuyat, R.K., Ugrinic, G.M.: Standard X-ray diffraction powder patterns. U.S. Nat. Bur. Stands. Circ. 539, Vol. IV (1953)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.T. The thermal expansion of anhydrite to 1000° C. Phys Chem Minerals 4, 77–82 (1979). https://doi.org/10.1007/BF00308361

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308361

Keywords

Navigation