Skip to main content
Log in

Influence of stacking faults on the spiral growth of polytype structures in mica

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A systematic theoretical deduction of polytype structures of mica that can result by the spiral growth mechanism operating in faulted 1M, 2M 1 and 3T basic matrices is reported. As a prerequisite, all possible intrinsic and extrinsic stacking fault configurations in each of the basic matrices have been worked out and their stacking fault energy (SFE) estimated. The deduction of polytype structures on the basis of the “faulted-matrix model” takes into account (i) the introduction of each of the low energy fault configurations in the exposed ledge of the screw dislocations, (ii) the change in the layer-position of the fault within the exposed ledge and (iii) the variation of the strength of the generating screw dislocation. At each stage, the spirally-grown polytypes are deduced for each basic structure. The most probable structures are predicted on the basis of the lowest SFE for the same strength of the screw dislocation and are then compared with the polytype structures reported in the literature. It was found that the faulted matrix model accounts successfully for the origin of all the polytype structures in mica. Furthermore, it may provide a basis for limiting the number of trial structures for determining the structures of long period polytypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelinckx S (1952) La croissance hélicoïdale des cristaux de biotite. C R Acad Sci Paris 234:971–973

    Google Scholar 

  • Amelinckx S, Dekeyser W (1953) Le polytypisme des minéraux micacés et argileux. I: Observations et interprétations. C R Congr Géol Intern Algiers 1952–18:9–22

  • Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal Structures of clay minerals and their X-ray identification, Mineralogical Society London 1980, pp 1–124

    Google Scholar 

  • Bailey SW, Christie OHJ (1978) Three-layer monoclinic lepidolite from Tørdal, Norway. Am Mineral 63:203–204

    Google Scholar 

  • Baronnet A (1972) Growth mechanisms and polytypism in synthetic hydroxyl-bearing phlogopite. Am Mineral 57:1272–1293

    Google Scholar 

  • Baronnet A (1975) Growth spirals and complex polytypism in micas. I: Polytypic structure generation. Acta Crystallogr A31:345–355

    Google Scholar 

  • Baronnet A (1976) Polytypisme et polymorphisme dans les micas: Contribution à l'étude du rôle de la croissance cristalline. Dr Es Sci Thesis, Marseilles

  • Baronnet A (1980) Polytypism in micas: A survey with emphasis on the crystal growth aspect. Curr Top Mat Sci 5:447–548

    Google Scholar 

  • Baronnet A, Amouric M, Chabot B (1976) Mécanismes de croissance, polytypisme et polymorphisme de la muscovite hydroxylée synthétique. J Cryst Growth 32:37–59

    Google Scholar 

  • Barronnet A, Pandey D, Krishna P (1981) Application of the faulted matrix model to the growth of polytype structures in mica. J Cryst Growth 52:963–968

    Google Scholar 

  • Beugnies A, Godfriaux I, Robaszynski F (1969) Contribution à l'étude des phengites. Bull Soc Belge Geol Paentol Hydrol 77:95–146

    Google Scholar 

  • Blasi A, Blasi de Pol C (1973) 2M 1 e 3T polymorfi delle miche diottaedriche coesistenti nei graniti del Massiccio dell'Argentera (Alpi Marittime). Atti Accad Naz Lincei 54:528–545

    Google Scholar 

  • Cerny P, Rieder M, Pondrova P (1970) Three polytypes of lepidolite from Czechoslovakia. Lithos 3:319–325

    Google Scholar 

  • Chatterjee ND (1970) Synthesis and upper stability of paragonite. Contrib Mineral Petrol 27:244–257

    Google Scholar 

  • Chatterjee ND (1971) Preliminary results on the synthesis and upper stability limit of margarite. Naturwissenschaften 58:147

    Google Scholar 

  • Crowley MS, Roy R (1964) Crystalline solubility in the muscovite and phlogopite groups. Am Mineral 49:348–362

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1965) Rock-forming minerals, vol 3: Sheet silicates. Longmans, London

    Google Scholar 

  • Dunoyer de Segonzac G, Hickel D (1972) Cristallochimie des phengites dans les quartzites micacés métamorphiques du Permo-Trias des Alpes Piémontaises. Sci Geol Bull Strasbourg 25:201–229

    Google Scholar 

  • Ernst WG (1963) Significance of phengitic micas from low-grade schists. Am Mineral 48:1357–1373

    Google Scholar 

  • Eugster HP, Yoder HS (1954) Paragonite. Carnegie Inst Wash Yearb 53:111–114

    Google Scholar 

  • Fiorentini Potenza M, Morelli G (1968) Le paragenesi delle metamorfiti a fengite 3T e muscovite 2M 1 in Val Chiusella — Zona Sesia — Lanzo. Atti Soc Ital Sci Nat Mus Civ Stor Nat Milano 107:5–36

    Google Scholar 

  • Foster MD (1960) Interpretation of the composition of lithium micas. US Geol Surv Prof Pap 354E:115–146

    Google Scholar 

  • Frank FC (1951a) The growth of carborundum: Dislocations and polytypism. Philos Mag 42:1014–1021

    Google Scholar 

  • Frank FC (1951b) Crystal dislocations — elementary concepts and definitions. Philos Mag 42:809–819

    Google Scholar 

  • Guven N (1971) Structural factors controlling stacking sequences in dioctahedral micas. Clays Clay Miner 134:159–165

    Google Scholar 

  • Harder H (1956) Untersuchungen an Paragoniten und an natriumhaltigen Muskoviten. Heidelb Beitr Mineral Petrogr 5:227–271

    Google Scholar 

  • Hewitt DA, Wones DR (1975) Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites. Am Mineral 60:854–862

    Google Scholar 

  • Hirth JP, Lothe J (1968) Theory of dislocations. Mc Graw-Hill, New York

    Google Scholar 

  • Koval' PV, Bazarova SB, Kashagev AA (1975) Polytypism of muscovite biotite and lithium mica types as a function of composition and genesis. Dokl Akad Nauk SSSR 225:125–128

    Google Scholar 

  • Levinson AA (1953) Studies in the mica group; relationship between polymorphism and composition in the muscovite-lepidolite series. Am Mineral 38:88–107

    Google Scholar 

  • McLarnan TJ (1981) The numbers of polytypes in sheet silicates. Z Kristallogr 155:247–268

    Google Scholar 

  • Mogami K, Nomura K, Miyamoto M, Takeda H, Sadanaga R (1978) On the number of distinct polytypes of micas and SiC with a prime layer-number. Can Mineral 16:427–435

    Google Scholar 

  • Munoz JL (1968) Physical properties of synthetic lepidolites. Am Mineral 53:1490–1512

    Google Scholar 

  • Olesch M (1975) Synthesis and solid solubility of trioctahedral brittle micas in the system CaO-MgO-Al2O3-SiO2-H2O. Am Mineral 60:188–199

    Google Scholar 

  • Pandey D, Krishna P (1975a) Influence of stacking faults on the growth of polytype structures. I — Cadmium iodide polytypes. Philos Mag 31:1113–1132

    Google Scholar 

  • Pandey D, Krishna P (1975b) Influence of stacking faults on the growth of polytype structures. II — Silicon carbide polytypes. Philos Mag 31:1133–1148

    Google Scholar 

  • Pandey D, Krishna P (1975c) A faulted matrix model for the spiral growth of polytype structures. Phys Lett 51A:209–210

    Google Scholar 

  • Pandey D, Krishna P (1975d) On the spiral growth of polytype structures in SiC from a faulted matrix. I: Polytypes based on the 6H structure. Mater Sci Eng 20:234–249

    Google Scholar 

  • Pandey D, Krishna P (1976) On the spiral growth of polytype structures in SiC from a faulted matrix. II: Polytypes based on the 4H and 15R structures. Mater Sci Eng 26:53–63

    Google Scholar 

  • Rieder M (1970) Lithium-iron micas from the Krusné Hory Mountains (Erzgebirge): Twins, epitactic overgrowths and polytypes. Z Kristallogr 132:161–184

    Google Scholar 

  • Rieder M (1971) Stability and physical properties of synthetic lithium — iron micas. Am Mineral 56:256–280

    Google Scholar 

  • Ross M, Takeda H, Wones DR (1966) Mica polytypes: Systematic description and identification. Science 151:191–193

    Google Scholar 

  • Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica polymorphs. Mineral Mag 31:209–235

    Google Scholar 

  • Takeda H (1967) Determination of the layer stacking sequence of a new complex mica polytype: A 4-layer lithium fluorophlogopite. Acta Crystallogr 22:845–853

    Google Scholar 

  • Takeuchi Y, Haga N (1971) Structural transformations of trioctahedral sheet silicates. Slip mechanisms of octahedral sheets and polytypic changes in micas. J Mineral Soc Japan Spec Pap 1:74–87

    Google Scholar 

  • Velde B (1965a) Experimental determination of muscovite polymorph stabilities. Am Mineral 50:436–449

    Google Scholar 

  • Velde B (1965b) Phengite micas: Synthesis, stability and natural occurrence. Am J Sci 263:886–913

    Google Scholar 

  • Velde B (1970) Les éclogites de la région nantaise (de Campbon au Cellier, Loire-Atlantique). Bull Soc Fr Mineral Cristallogr 93:370–385

    Google Scholar 

  • Velde B (1971) The stability and natural occurrence of margarite. Mineral Mag 38:317–323

    Google Scholar 

  • Wones DR (1963) Physical properties of synthetic biotites on the join phlogopite-annite. Am Mineral 48:1300–1321

    Google Scholar 

  • Yoder HS (1959) Experimental studies on micas: A synthesis. Proc Sixth Nation Conf Clays Clay Miner. Pergamon Press, London, pp 42–60

    Google Scholar 

  • Yoder HS, Eugster HP (1954) Phlogopite synthesis and stability range. Geochim Cosmochim Acta 6:157–185

    Google Scholar 

  • Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8:225–280

    Google Scholar 

  • Zhoukhlistov AP, Zvyagin BB, Soboleva SV, Fedotov AF (1973) The crystal structure of the dioctahedral mica 2M 2 determined by high voltage electron diffraction. Clays Clay Miner 21:465–470

    Google Scholar 

  • Zvyagin BB (1962) A theory of polymorphism in micas. Sov Phys Crystallogr 6:571–580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, D., Baronnet, A. & Krishna, P. Influence of stacking faults on the spiral growth of polytype structures in mica. Phys Chem Minerals 8, 268–278 (1982). https://doi.org/10.1007/BF00308248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308248

Keywords

Navigation