Skip to main content
Log in

Prediction of refractive indices in minerals from crystallographic data: Applications and limitations of the point-dipole model

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A point-dipole calculation which incorporates an expression for the Lorentz-factor tensor has been used to model the effect of chemical substitution on refractive index and optic axial angle (2V). Isotropic electronic polarizabilities for the sodium D line are refined by least-squared methods from lattice dipole sums and observed refractive indices. Although the assumption of isotropic polarizability is unrealistic for many mineral structures, the model is useful in interpreting the relationship between structure, chemical composition, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abs-Wurmbach I, Langer K, Seifert F, Tillmans E (1981) The crystal chemistry of (Mn3+, Fe3+)-substituted andalusites (viridines and kanonaite), (Al1−xy Mn3+Fe3+)2(O/SiO4): crystal structure refinements, Mössbauer, and polarized optical absorption spectra. Z Kristallogr 155:81–113

    Google Scholar 

  • Armbruster Th, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291

    Google Scholar 

  • Armbruster Th, Bürgi HB (1982) Orientation of CO2 in the cavity of cordierite, a single-crystal x-ray study at 100, 300 and 500 K. Fortschr Mineral 60, Beih 1:37–39

    Google Scholar 

  • Armbruster Th, Irouschek A (1982) Cordierites from the Lepontine Alps: Na+Be⇋Al substitution, gas content, cell parameters and optics. Contrib Mineral Petrol 82:389–296

    Google Scholar 

  • Armbruster Th (1986) Effect of H2O on the structure of low-cordierite, a single-crystal X-ray study. In: Crystal Chemistry of Minerals, Proceedings of the 13th general meeting of the International Mineralogical Association, Varna, September 19th–25th, 1982, Publishing House of the Bulgarian Acad of Sci, 485–503

  • Born M, Göppert-Mayer M (1933) Dynamische Gittertheorie der Kristalle. Handbuch der Physik XXIV, 2. Springer-Verlag, Berlin

    Google Scholar 

  • Bragg WL (1924) The refractive indices of calcite and aragonite. Proc R Soc London Ser A 105:370–386

    Google Scholar 

  • Burnham CW, Buerger MJ (1961) Refinement of the crystal structure of andalusite. Z Kristallogr 115:269–290

    Google Scholar 

  • Carson DG, Rossman GR, Vaughn RW (1982) Orientation and motion of water molecules in cordierites: a proton nuclear magnetic resonance study. Phys Chem Minerals 8:14–19

    Article  Google Scholar 

  • Cohen HD (1966) Electric dipole polarizability of atoms by the Hartree-Fock method. III. The isoelectronic 10-electron series. J Chem Phys 45:10–12

    Article  Google Scholar 

  • Cole WF, Lancucki CI (1974) A refinement of the crystal structure of gypsum, CaSO4·2H2O. Acta Crystallogr B 30:921–929

    Article  Google Scholar 

  • Cummins PR, Dunmur DA, Munn RW, Newham RJ (1976) Applications of the Ewald method. I. Calculation of multiple lattice sums. Acta Crystallogr A 32:847–853

    Google Scholar 

  • Gunter M, Bloss FD (1982) Andalusite-kanonaite series: lattice and optical parameters. Am Mineral 67:1218–1228

    Google Scholar 

  • Hochella MF, Brown GE, Ross FK, Gibbs GV (1979) High-temperature crystal chemistry of hydrous Mg- and Fe-cordierites. Am Mineral 64:337–351

    Google Scholar 

  • Ladell J (1965) Redetermination of the crystal structure of topaz: a preliminary account. Norelco Rep 12:34–39

    Google Scholar 

  • Lager GA, Armbruster Th, Rotella FJ, Jorgensen JD, Hinks DG (1984) A crystallographic study of the low-temperature dehydration products of gypsum: hemihydrate CaSO4·0.50H2O and γ-CaSO4. Am Mineral 69:910–919

    Google Scholar 

  • Lahiri J, Mukherji A (1967) Electrostatic polarizability and shielding factors for ions of neon configuration. Phys Rev 153:1386–1387

    Article  Google Scholar 

  • Langhoff PW (1965) Multipole polarizabilities and shielding factors from Hartee-Fock wave functions. Phys Rev 139:A1415-A1425

    Article  Google Scholar 

  • Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334

    Google Scholar 

  • Pauling L (1927) The theoretical prediction of the physical properties of many-electron atoms and ions. Mole refraction, diamagnetic susceptibility, and extension in space. Proc Roy Soc Lond Ser A 114:181–211

    Google Scholar 

  • Pohl D (1978) Electronic polarizabilities of ions in doubly refracting crystals. Acta Crystallogr A 34:574–578

    Google Scholar 

  • Pohl D, Eck JC, Klaska KH (1978) Determination of electronic polarizabilities of ions in orthosilicates. ActaCrystallogr A 34:1027–1028

    Google Scholar 

  • Pohl D, Rath R (1979) Point-dipole theory and optical birefringence of calcite-type carbonates. Acta Crystallogr A 35:694–695

    Article  Google Scholar 

  • Ribbe PH, Gibbs GV (1971) The crystal structure of topaz and its relation to physical properties. Am Mineral 56:24–30

    Google Scholar 

  • Ribbe PH, Rosenberg PE (1971) Optical and x-ray determination methods for fluorine in topaz. Am Mineral 56:1812–1821

    Google Scholar 

  • Selkregg KR, Bloss FD (1980) Cordierites: compositional controls of Δ, cell parameters and optical properties. Am Mineral 65:522–533

    Google Scholar 

  • Shelley D (1975) Manual of Optical Mineralogy. Elsevier Scientific Publishing Company, New York

    Google Scholar 

  • Tröger WE (1982) Optische Bestimmung der gesteinsbildenden Minerale: Schweizerbart'sche Verlagsbuchhandlung Stuttgart

  • Zemann J, Zobetz E, Heger G, Völlenke H (1979) Strukturbestimmung eines OH-reichen Topases. Oesterr Akad Wiss Math-Naturwiss K1, Anzeiger 116:145–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lager, G.A., Armbruster, T. & Pohl, D. Prediction of refractive indices in minerals from crystallographic data: Applications and limitations of the point-dipole model. Phys Chem Minerals 14, 177–180 (1987). https://doi.org/10.1007/BF00308222

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308222

Keywords

Navigation