Skip to main content
Log in

Vibrational interactions of tetrahedra in silicate glasses and crystals

II. Calculations on melities, pyroxenes, silica polymorphs and feldspars

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Normal coordinate calculations, producing synthetic infrared and Raman spectra, were carried out on melilites, pyroxenes, silica polymorphs and feldspars. Atomic motions are complex in the high-frequency Raman modes of melilites and aluminous pyroxenes. The symmetric T-Onb stretching vibrations of Si and Al tetrahedra with different numbers of bridging oxygens are separate from each other, but may combine individually with oscillation of bridging oxygens between Si and Al tetrahedra. The latter type of vibration tends to dominate as Al/Si increases. The frequencies of these vibrational components and the degree of such intermixing depend on T-O force constants, which vary greatly depending on local bonding configurations; individual bands in the high-frequency Raman cannot in general be assigned to single structural entities or fixed combinations thereof. Calculations confirm that in some Al-Si glasses such as jadeite and spodumene, i.e. those in which all Al can be tetrahedral without non-bridging oxygens, Al-O-Al linkages or linkage of more than two tetrahedra by a single oxygen, aluminum is predominantly in tetrahedral coordination. Other Al-Si glasses which are richer in aluminum or which have non-bridging oxygens may contain Al tetrahedral triclusters, non-tetrahedral Al, or both. On the basis of distinctive 450–750 cm−1 infrared bands, both silica and feldspar glasses resemble tridymite and related stuffed derivatives, not other crystalline silica polymorphs or feldspars. Either these glasses have a structure like that of tridymite on a local scale, or the disorder of the glasses causes drastic modification to the vibrations in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araki T, Zoltai T (1969) Refinement of a coesite structure. Z Kristallogr 129:381–387

    Google Scholar 

  • Bates JB (1972a) Dynamics of β-quartz structures of vitreous SiO2 and BeF2. J Chem Phys 56:1910–1917

    Google Scholar 

  • Bates JB (1972b) Raman spectra of α and β cristobalite. J Chem Phys 57:4042–4047

    Google Scholar 

  • Baur WH (1971) The prediction of bond length variations in silicon-oxygen bonds. Am Mineral 56:1573–1599

    Google Scholar 

  • Baur WH (1974) The geometry of polyhedral distortion. Predictive relationships for the phosphate group. Acta Crystallogr B30:1195–1215

    Google Scholar 

  • Baur WH (1978) Variation of mean Si-O bond lengths in silicon-oxygen tetrahedra. Acta Crystallogr B34:1751–1756

    Google Scholar 

  • Bell RJ, Dean P (1970) Atomic vibrations in vitreous silica. Disc Faraday Soc 50:55–61

    Article  Google Scholar 

  • Bell RJ, Dean P (1972) The structure of vitreous silica: Validity of the random network theory. Philos Mag 25:1381–1398

    Google Scholar 

  • Bell RJ, Bird NF, Dean P (1968) The vibrational spectra of vitreous silica, germania and beryllium fluoride. J Phys C 1:299–303

    Article  Google Scholar 

  • Bell RJ, Dean P, Hibbins-Butler DC (1970) Localization of normal modes in vitreous silica, germania and beryllium fluoride. J Phys C 3:2111–2118

    Article  Google Scholar 

  • Bell RJ, Dean P, Hibbins-Butler DC (1971) Normal mode assignments in vitreous silica, germania and beryllium fluoride. J Phys C 4:1214–1220

    Article  Google Scholar 

  • Bell RJ, Carnevale A, Kurkjian CR, Peterson GE (1980) Structure and phonon spectra of SiO2, B2O3 and mixed SiO2-B2O3 glasses. J Non-Cryst Solids 35/36:1185–1190

    Article  Google Scholar 

  • Berezhnoy AS, Mitzuk BM, Chernova VI (1969) Inra-red spectroscopy investigation of the anorthite and anorthite glass. Akad Nauk Ukr RSR Ser B31:1–4

    Google Scholar 

  • Borelli NF (1969) The infrared spectra of SiO2-GeO2 glass. Phys Chem Glasses 10:43–45

    Google Scholar 

  • Brawer SA (1975) Theory of the vibrational spectra of some network and molecular glasses. Phys Rev 11B:3173–3194

    Google Scholar 

  • Brawer SA, White WB (1977) Raman spectroscopic investigation of the structure of silicate glasses. II. Soda-alkaline earth-alumina ternary and quaternary glasses. J Non-Cryst Solids 23:261–278

    Article  Google Scholar 

  • Brown ID, Shannon RD (1973) Empirical bond-strength-bond-length curves for oxides. Acta Crystallogr A29:266–282

    Google Scholar 

  • Brown GE, Gibbs GV, Ribbe PH (1969) The nature and the variation in length of the Si-O and Al-O bonds in framework silicates. Am Mineral 54:1044–1061

    Google Scholar 

  • Bues W, Gehrke H-W (1956) Schwingungsspektren von Schmelzen, Glasern und Kristallen des Natrium-di-, tri- und -tetraphosphats. Z Anorg Allgem Chemie 288:291–323

    Google Scholar 

  • Bunch TE, Cohen AJ, Dence MR (1967) Natural terrestrial maskelynite. Am Mineral 52:244–253

    Google Scholar 

  • Burdett JK, McLarnan TJ (1984) An orbital interpretation of Pauling's rules. Am Mineral 69:601–621

    Google Scholar 

  • Burnham CB (1963) Refinment of the crystal structure of sillimanite. Z Kristallogr 118:127–148

    Google Scholar 

  • Chandrasekhar HR, Chandrasekhar M, Manghnani MI (1979) Phonons in titanium-doped vitreous silica. Solid State Commun 31:329–333

    Article  Google Scholar 

  • Clark JR, Appleman DE, Papike JJ (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. Mineral Soc Am Spec Pap 2:31–50

    Google Scholar 

  • Cornilsen BC, Condrate RA (1977) The vibrational spectra of magnesium pyrophosphate polymorphs. J Phys Chem Solids 38:1327–1332

    Google Scholar 

  • Cornilsen BC, Condrate RA (1978) The vibrational spectra of α-alkaline-earth pyrophosphates. J Solid State Chem 23:375–382

    Article  Google Scholar 

  • Dean P (1972) The vibrational properties of disordered systems: Numerical studies. Rev Mod Phys 44:127–168

    Article  Google Scholar 

  • De Jong BHWS, Brown GE (1980) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions — II. The network modifying effects of Mg2+, K+, Na+, Li+, H+, OH, F, Cl, H2O, CO2 and H3O+ on silicate polymers. Geochim Cosmochim Acta 44:1627–1642

    Google Scholar 

  • Dickenson JE, Hess PC, Dickenson MP, Denkwerth PA (1984) Aluminum distribution in alkali aluminosilicate glasses. (abstract) Geol Soc Am Abstr Prog 16:488

    Google Scholar 

  • Dowty E (1987a) Fully automated microcomputer calculation of vibrational spectra. Phys Chem Minerals 14:67–79

    Google Scholar 

  • Dowty E (1987b) Vibrational interactions of tetrahedra in silicate glasses and crystals: I. Calculations on ideal silicate-aluminate-germanate structural units. Phys Chem Minerals 14:80–93

    Google Scholar 

  • Dowty E (1987c) Vibrational interactions of tetrahedra in silicate glasses and crystals: III. Calculations on simple alkali silicates, thortveitite and rankinite. Submitted to Phys Chem Minerals

  • Dowty E, Bergman SC, Spera FJ (1980) Energetics of volatile solution in melts. (Abstract) Geol Soc of Am Abstr Prog 12:416

    Google Scholar 

  • Elcombe D (1967) Some aspects of the lattice dynamics of quartz. Proc Phys Soc London 91:947

    Google Scholar 

  • Etchepare J, Merian M, Smetankine L (1974) Vibrational normal modes of SiO2. I. α and β quartz. J Chem Phys 60:1873–1876

    Article  Google Scholar 

  • Etchepare J, Merian M, Kaplan P (1978) Vibrational normal modes of SiO2. II. Cristobalite and tridymite. J Chem Phys 68:1531–1537

    Google Scholar 

  • Fabel GW, White WB, White EW, Roy R (1972) Structure of lunar glasses by Raman and soft X-ray spectroscopy. Proc Lunar Sci Conf, 3rd, vol 1, pp 939–951

  • Farmer VC (1974) The anhydrous oxide minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Foreman N, Peacor D (1970) Refinement of the nepheline structure at several temperatures. Z Kristallogr 132:45–70

    Google Scholar 

  • Furukawa T, White WB (1979) Structure and crystallization of glasses in the Li2Si2O5—TiO2 system determined by Raman spectroscopy. Phys Chem Glasses 20:69–80

    Google Scholar 

  • Galeener FL (1982a) Planar rings in glasses. Solid State Commun 44:1037–1040

    Article  Google Scholar 

  • Galeener FL (1982b) Planar rings in vitreous silica. J Non-Cryst Solids 49:53–62

    Article  Google Scholar 

  • Ghose S (1965) A scheme of cation distribution in the amphiboles. Mineral Mag 35:46–54

    Google Scholar 

  • Harlow GE, Brown GE (1980) Low albite: and X-ray and neutron diffraction study. Am Mineral 65:986–995

    Google Scholar 

  • Hawthorne FC (1983) Crystal chemistry of the amphiboles. Reviews in Mineralogy, 9A. Mineralogical Society of America

  • Hess PC (1980) Polymerization model of silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press

  • Hochella MF, Brown GE (1981) Comments on the structural role of aluminum in aluminosilicate glasses and melts and magmatic liquids (abstr). Geol Soc Am Abstr Prog 13:473–474

    Google Scholar 

  • Hörkner W, Müller-Buschbaum HK (1976) Zur Kristallstructur von CaAl2O4. J Inorg Nuclear Chem 38:983–984

    Google Scholar 

  • Iishi K (1978 a) Lattice-dynamical study of the α-β quartz phase transition. Am Mineral 63:1190–1197

    Google Scholar 

  • Iishi K (1978 b) Lattice dynamics of forsterite. Am Mineral 63:1198–1208

    Google Scholar 

  • Iishi K (1978 c) Lattice dynamics of corundum. Phys Chem Minerals 3:1–10

    Article  Google Scholar 

  • Iishi K, Tomisaka T, Kato T, Umegaki Y (1971) The force field of K feldspar. Z Kristallogr 134:213–229

    Google Scholar 

  • Iishi K, Salje E, Werneke C (1979) Phonon spectra and rigid-ion model calculations on andalusite. Phys Chem Minerals 4:173–188

    Google Scholar 

  • Iwamoto N, Tsunawaki Y, Fuji M, Hattori T (1975) Raman spectra of K2O-SiO2 and K2O-SiO2-TiO2 glasses. J Non-Cryst Solids 18:303–306

    Article  Google Scholar 

  • Katiyar RS, Krishnan RS (1967) The vibrational spectra of rutile. Phys Lett 25A:525–526

    Google Scholar 

  • Kleinman DA, Spitzer WG (1962) Theory of the optical properties of quartz in the infrared. Phys Rev 125:16–30

    Google Scholar 

  • Konijnendijk WL, Buster JHJM (1977) Raman-scattering measurements of silicate glasses containing sulphate. J Non-Cryst Solids 23:401–418

    Article  Google Scholar 

  • Konnert JH, Karle J (1972) Tridymite-like structure in silica glass. Nature Phys Sci 236:92–94

    Google Scholar 

  • Konnert JC, Karle J, Ferguson L (1973) Crystalline ordering in silica and germania glasses. Science 179:187–188

    Google Scholar 

  • Lacey ED (1965) Aluminum in glasses and melts. Phys Chem Glasses 4:234–238

    Google Scholar 

  • Lachowski EE, Glasser FP (1973) Application of gas chromatography to mineral chemistry: Aluminum-silicon ordering in melilites. Mineral Mag 39:412–419

    Google Scholar 

  • Laughlin RB, Joannopoulos JD (1977) Phonons in amorphous silica. Phys Rev B16:2942–2952

    Google Scholar 

  • Laves F, Hafner S (1956) Ordnung/Unordnung und Ultrarotabsorption. I. (Al-Si)-Verteilung in Feldspäten. Z Kristallogr 108:52–63

    Google Scholar 

  • Lazarev AN (1972) Vibrational spectra and structure of silicates. Consultants Bureau, New York London

    Google Scholar 

  • Louisnathan SJ (1969) Refinement of the crystal structure of hardystonite, Ca2ZnSi2O7. Z Kristallogr 130:427–437

    Google Scholar 

  • Louisnathan SJ (1970) The crystal structure of synthetic soda melilite, CaNaAlSi2O7. Z Kristallogr 131:314–321

    Google Scholar 

  • McMillan P, Piriou B (1982) The structures and vibrational spectra of crystals and glasses in the silica-alumina system. J Non-Cryst Solids 53:279–298

    Article  Google Scholar 

  • McMillan P, Piriou B (1983) Raman spectroscopy of calcium aluminate glasses and crystals. J Non-Cryst Solids 55:221–242

    Article  Google Scholar 

  • McMillan P, Piriou B, Navrotsky A (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silicasodium aluminate, and silica-potassium aluminate. Geochim et Cosmochim Acta 46:2021–2037

    Google Scholar 

  • Mirgorodskii AN, Lazarev AN (1973) Calculation of intensities in an α-quartz crystal as a method of checking on the shapes of the vibrations. Opt Spectrosc 34:514–517

    Google Scholar 

  • Moenke HHW (1974) Silica, the three dimensional silicates, borosilicates and beryllium silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Mysen BO, Ryerson FJ, Virgo D (1980) The influence of TiO2 on the structure and derivative properties of silicate melts. Am Mineral 65:1150–1165

    Google Scholar 

  • Mysen BO, Ryerson FJ, Virgo D (1981 a) The structural role of phosphorus in silicate melts. Am Mineral 66:106–117

    Google Scholar 

  • Mysen BO, Virgo D, Kushiro I (1981 b) Distribution of aluminum between structural units in silicate melts. Carnegie Inst Wash Ybk 80:304–305

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982) Distribution of aluminum between anionic units in depolymerized silicate melts as a function of pressure and temperature. Carnegie Inst Wash Ybk 81:360–365

    Google Scholar 

  • Nelson BN, Exarhos GJ (1979) Vibrational spectroscopy of cationsite interactions in phosphate glasses. J Chem Phys 7:2739–2747

    Google Scholar 

  • Newnham RE, Megaw HD (1960) The crystal structure of celsian (barium feldspar). Acta Crystallogr 13:303–313

    Article  Google Scholar 

  • Newton MD, O'Keeffe M, Gibbs GV (1980) Ab-initio calculation of interatomic force constants in H6Si2O7 and the bulk modulus of α quartz and α cristobalite. Phys Chem Minerals 6:305–312

    Google Scholar 

  • Okamura FP, Ghose S, Ohashi H (1974) Structure and crystal chemistry of calcium Tschermak's pyroxene CaAlAlSiO6. Am Mineral 59:549–577

    Google Scholar 

  • O'Keeffe M, Hyde BG (1982) Anion coordination and cation packing in oxides. J Solid State Chem 44:24–31

    Article  Google Scholar 

  • Plyusnina II, Maleyev MN, Yefimova GA (1970) Infrared-spectroscopic investigation of cryptocrystalline varieties of silica. Iz Akad Nauk SSSR Ser Geol 78–83. Translation: Int Geol Rev 13:1750–1754

    Google Scholar 

  • Raaz F (1930) Über den Feinbau des Gehlenit, ein Beitrag zur Kenntnis des Melilithe. Sitz Akad Wiss Wien Math-Naturhist K1 Abt I 139:645–673

    Google Scholar 

  • Ramberg H (1954) Relative stabilities of some simple silicates as related to the polarization of the oxygen ions. Am Mineral 39:256–271

    Google Scholar 

  • Ross SD (1974) Phosphates and other oxyr-anions of group V. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Rutstein MS, White WB (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. Am Mineral 56:877–888

    Google Scholar 

  • Ryerson FJ, Hess PC (1980) The role of P2O5 in silicate melts. Geochim et Cosmochim Acta 44:611–624

    Google Scholar 

  • Sahama TG, Lehtinen M (1967) Infrared absorption of melilite. Bull Comm Geol Finl 229:29–40

    Google Scholar 

  • Sandstrom DR, Lytle FW, Wei PSP, Greegor RB, Wong J, Schultz P (1980) Coordination of Ti in TiO2-SiO2 glass by X-ray absorption spectroscopy. J Non-Cryst Solids 41:201–207

    Article  Google Scholar 

  • Scott JF, Porto SPS (1967) Longitudinal and transverse optical lattice vibrations in quartz. Phys Rev 161:903–910

    Article  Google Scholar 

  • Sen PN, Thorpe MF (1977) Phonons in AX2 glasses: From molecular to band-like modes. Phys Rev B15:4030–4038

    Google Scholar 

  • Sharma SK, Simons B (1981) Raman study of crystalline polymorphs and glasses of spodumene composition quenched from various pressures. Am Mineral 66:118–126

    Google Scholar 

  • Sharma SK, Yoder HS (1979) Structural study of glasses of akermanite, diopside and sodium melilite composition by Raman spectroscopy. Carnegie Inst Wash Yearb 78:526–532

    Google Scholar 

  • Sharma SK, Virgo D, Mysen B (1979a) Raman study of the coordination of aluminum in jadeite melts as a function of pressure. Am Mineral 64:779–787

    Google Scholar 

  • Sharma SK, Virgo D, Kushiro I (1979b) Relationship between density, viscosity and structure of GeO2 melts at low and high pressures. J Non-Cryst Solids 33:235–248

    Article  Google Scholar 

  • Sharma SK, Mammone JF, Nicol MF (1981) Raman investigation of ring configurations in vitreous silica. Nature 292:140–141

    Article  Google Scholar 

  • Sharma SK, Simons B, Yoder HS (1983a) Raman study of anorthite, calcium Tschermak's pyroxene and gehlenite in crystalline and glassy states. Am Mineral 68:1113–1125

    Google Scholar 

  • Sharma SK, Matson DW, Philpotts JA (1983b) Structures of glasses along the join SiO2-GeO2. Unscheduled poster presentation. Am Geophys Union spring meeting

  • Shropshire J, Keat PP, Vaughan PA (1959) The crystal structure of keatite, a new form of silica. Z Kristallogr 112:409–413

    Google Scholar 

  • Striefler ME, Barsch GR (1975) Lattice dynamics of α-quartz. Phys Rev B12:4553–4568

    Google Scholar 

  • Taylor M, Brown GE (1979a) Structure of mineral glasses. I. The feldspar glasses NaAlSi3O8, KAlSi3O8 and CaAl2Si2O8. Geochim et Cosmochim Acta 43:61–75

    Google Scholar 

  • Taylor M, Brown GE (1979b) Structure of mineral glasses. II. The SiO2-NaAlSiO4 join. Geochim et Cosmochim Acta 43:1467–1473

    Google Scholar 

  • Thorpe MF, Galeener FL (1980) Network dynamics. Phys Rev B22:3078–3093

    Google Scholar 

  • Tobin MC, Baak T (1968) Raman spectra of some low-expansion glasses. J Opt Soc Am 58:1459

    Google Scholar 

  • Tomisaka T, Iishi K (1980) Some aspects of the lattice dynamics of diopside. Mineral J (Japan) 10:84–96

    Google Scholar 

  • Traylor JG, Smith HG, Nicklow MK (1970) Lattice dynamics of rutile. Phys Rev 3B:3457–3472

    Google Scholar 

  • Verweij H (1979 a) Raman study of the structures of alkali germanosilicate glasses. I. Sodium and potassium metagermanodisilicate glasses. J Non-Cryst Solids 33:41–53

    Google Scholar 

  • Verweij H (1979 b) Raman study of the structures of alkali germanosilicate glasses. II. Lithium, sodium and potassium digermanodisilicate glasses. J Non-Cryst Solids 33:55–59

    Google Scholar 

  • Von Stengel MO (1977) Normalschwingungen von Alkalifeldspäten. Z Kristallogr 146:1–18

    Google Scholar 

  • White WB (1975) Structural interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Karr C (ed) Infrared and raman spectroscopy of lunar and terrestrial minerals. Academic Press, New York, pp 325–358

    Google Scholar 

  • Woodhead JA (1977) The crystallographic and calorimetric effects of Al-Si distribution on the tetrahedral sites of melilite. PhD Dissertation, Princeton University

  • Zachariasen WH (1963) The crystal structure of monoclinic metaboric acid. Acta Crystallogr 16:385–392

    Google Scholar 

  • Zulumyan NO, Mirgorodskii AP, Pavinich VF, Lazarev AN (1976) Study of calculation of the vibrational spectrum of a crystal with complex polyatomic anions. Diopside CaMgSi2O6. Opt Spectrosc 41:622–627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowty, E. Vibrational interactions of tetrahedra in silicate glasses and crystals. Phys Chem Minerals 14, 122–138 (1987). https://doi.org/10.1007/BF00308216

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308216

Keywords

Navigation