Skip to main content
Log in

Raman scattering and lattice vibrations of Ni2SiO4 spinel at elevated temperature

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Raman spectra of Ni2SiO4 spinel (O 7 h Z=8) have been measured in the temperature range from 20 to 600 °C and the Raman active vibrations (A 1g +E g +3F 2g ) have been assigned. A calculation of the optically active lattice vibrations of this spinel has been made, assuming a potential function which combines general valence and short range force constants. The values of the force constants at 20 and 500 °C have been calculated from the vibrational frequencies of the observed Raman spectra and infrared (IR) spectral data.

The Ni spinel at 20 °C has a prominently small Si-O bond stretching force constant of K(SiO)=2.356 ∼ 2.680 md/Å and a large Ni-O bond stretching constant of K(NiO)=0.843 ∼ 1.062 md/Å and these force constants at 500 °C decrease to K(SiO)=2.327 ∼ 2.494 md/Å and K(NiO)=0.861 ∼ 0.990 md/Å. The Si-O bond is noticeably weakened at high temperatures, despite the small thermal expantion from 1.657 Å (20 °C) to 1.660 Å (500 °C).

These changes of the interatomic force constants of the spinel at high temperatures are in accord with the thermal structure changes observed by X-ray diffraction study. The weakened Si-O bond is consistent with the fact that Si atoms in the spinel lattice can diffuse at significant rates at elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Akimoto S, Fujisawa H, Katsura T (1965) The olivine-spinel transition in Fe2SiO4 and Ni2SiO4. J Geophys Res 70:1969–1977

    Google Scholar 

  • Akimoto S, Fujisawa H (1968) Olivine-spinel solid solution equilibrium in the system Mg2SiO4-Fe2SiO4. J Geophys Res 15:1467–1479

    Google Scholar 

  • Akimoto S, Matsui Y, Syono Y (1976) High-pressure crystal chemistry of orthosilicates and the formation of the mantle transition zone. The Physics and Chemistry of Minerals and Rocks. Strens RGJ (ed) J Willey & Son, New York, pp 327–363

    Google Scholar 

  • Anderson DL (1977) Composition of the mantle and core. Ann Rev Earth Planet Sci 5:179–202

    Google Scholar 

  • Devarajan V, Funk E (1975) Normal coordinate analysis of the optically active vibrations (K=0) of crystalline magnesium orthosilicate Mg2SiO4 (forsterite). J Chem Phys 62:3406–3411

    Google Scholar 

  • Finger LW, Hazen RM, Yagi T (1979) Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure. Am Mineral 64:1002–1009

    Google Scholar 

  • Furnish MD, Bassett WA (1983) Investigation of the mechanism of the olivine-spinel transition in fayalite by synchrotron radiation. J Geophys Res 88:333–341

    Google Scholar 

  • Iishi K (1978) Lattice dynamics of forsterite. Am Mineral 63:1198–1208

    Google Scholar 

  • Ishii M, Hiraishi J, Yamanaka T (1982) Structure and lattice vibrations of Mg-Al spinel solid solution. Phys Chem Mineral 8:64–68

    Google Scholar 

  • Kamb B (1968) Structure basis of the olivine-spinel relation. Am Mineral 53:1439–1455

    Google Scholar 

  • Jeanloz R (1980) Infrared spectra of olivine polymorphs: α, β phase and spinel. Phys Chem Mineral 5:327–341

    Google Scholar 

  • Lager GA, Meagher EP (1978) High temperature structural study of six olivines. Am Mineral 63:365–377

    Google Scholar 

  • Ma CB (1975) Structure refinement of high-pressure Ni2SiO4 spinel. Z Kristallogr 141:126–137

    Google Scholar 

  • Marumo F, Isobe M, Saito Y, Yagi T, Akimoto S (1974) Electron density distribution in crystals of γ-Ni2SiO4. Acta Crystallogr B30:1904–1906

    Google Scholar 

  • Marumo F, Isobe M, Akimoto S (1977) Electron-density distribution in crystals of γ-Fe2SiO4 and γ-Co2SiO4. Acta Crystallogr B33:713–716

    Google Scholar 

  • Morimoto N, Tokonami M, Watanabe M, Koto K (1974) Crystal structures of three polymorphs of Co2SiO4. Am Mineral 59:475–485

    Google Scholar 

  • Nakagawa I (1969) Far infrared spectra and lattice vibrations of inorganic complex salts. Cood Chem Rev 4:423–462

    Google Scholar 

  • O'Horo MP, Frisillo AL, White WB (1973) Lattice vibrations of MgAl2O4 spinel. J Phys Chem Solids 34:23–28

    Google Scholar 

  • Paques-Ledent M Thn, Tarte P (1973) Vibrational studies of olivine-type compounds-I. The i.r. and Raman spectra of the isotopic species of Mg2SiO4. Spectrochem Acta 29A:1007–1016

    Google Scholar 

  • Poirier JP (1981) On the kinetics of olivine-spinel transition. Phys Earth Planet Inter 26:179–187

    Google Scholar 

  • Price GD, Putnis A, Smith DGW (1982) A mechanism for the spinel to β phase transformation in the (Mg, Fe)2SiO4 system. Nature 296:729–731

    Google Scholar 

  • Ringwood AE, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Inter 3:89–108

    Google Scholar 

  • Servoin JL, Piriou B (1973) Infrared reflectivity and Raman scattering of Mg2SiO4 single crystal. Phys Status Solidi B55:677–686

    Google Scholar 

  • Syono Y, Tokonami M, Matsui Y (1971) Crystal field effect on the olivine-spinel transformation. Phys Earth Planet Inter 4:347–352

    Google Scholar 

  • Tarte P (1962) Étude infra-rouge des orthosilicates et des orthogermanates. Spectrochim Acta 18:467–483

    Google Scholar 

  • Tarte P (1963) Étude infra-rouge des orthosilicates et des orthogermanates II. Spectrochim Acta 19:25–47

    Google Scholar 

  • Tarte P (1963) Étude infra-rouge des orthosilicates et des orthogermanates III. Spectrochim Acta 19:49–71

    Google Scholar 

  • White WB, Roy R (1964) Infrared spectra-crystal structure correlations: II AM Mineral 49:1670–1687

    Google Scholar 

  • White WB (1975) Structure interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Infrared and Raman spectroscopy of Lunar and Terrestrial Minerals. Karr, C, Jr (ed). Academic Press, New York, pp 325–358

    Google Scholar 

  • Yagi T, Marumo F, Akimoto S (1974) Crystal structures of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490

    Google Scholar 

  • Yamanaka T, Takeuchi Y (1982) Thermal atomic displacement in the structure of MgAl2O4 and silicate spinels. Petrol Mineral Min Geol sp 3:61–72

    Google Scholar 

  • Yamanaka T (1986) Crystals structures of Ni2SiO4 and Fe2SiO4 as a function of temperature and heating duration. Phys Chem Mineral 13

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, T., Ishii, M. Raman scattering and lattice vibrations of Ni2SiO4 spinel at elevated temperature. Phys Chem Minerals 13, 156–160 (1986). https://doi.org/10.1007/BF00308157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308157

Keywords

Navigation