Skip to main content
Log in

Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The structure of Mn and Fe oxides and oxyhydroxides has been probed by EXAFS. It is shown that EXAFS spectroscopy is sensitive to the nature of interpolyhedral linkages relying on metal-two nearest metal distances. Spectra recorded at 290 K and 30 K indicate that intercationic distances can be determined by EXAFS with a good accuracy (0.02 Å) assuming a purely Gaussian distribution function, even at room temperature. Although the accuracy on atomic numbers determination is fair for these disordered systems, EXAFS can differentiate structures with contrasted edge- over corner-sharing ratio like pyrolusite, ramsdellite, todorokite and lithiophorite or lepidocrocite and goethite. A direct application of this result has shown that the proportion of pyrolusite domains within the lattice of nsutite from Ghana is equal to 35±15 percent. The systematic study of Mn dioxides also put forward the sensitivity of EXAFS to the presence of corner-sharing octahedra, with a detection limit found to be less than 8 percent. In spite of their similar XRD patterns, the EXAFS study of todorokite and asbolane confirms that they possess a distinct structure; that is, a tunnel structure for the former and a layered structure for the second.

Such a topological approach has been used to probe the structure of ferruginous vernadite; a highly disordered iron-bearing Mn oxide. Fe and Mn K-edges EXAFS spectra are very dissimilar, traducing a different short range order. The Mn phase is constituted by MnO2 layers. Its large local structural order contrasts with the short range disorder of the iron phase. This hydrous Fe oxyhydroxide is constituted by face-, edge- and corner-sharing octahedra. This iron phase possesses the same local order as feroxy-hyte, but is long range disordered. The presence of face-sharing Fe(O,OH)6 octahedra prevents its direct solid-state transformation into well crystallized oxyhydroxides, and explains the necessary dissolution-reprecipitation mechanism generally invoked for the hydrous ferric gel → goethite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrhenius G, Cheung K, Crane S, Fisk M, Frazer J, Korkisch J, Mellin T, Nakao S, Tsai A, Wolf G (1979) Counterions in marine manganates. Colloq Int CNRS 289:333–356

    Google Scholar 

  • Blake RL, Hessevick RE, Zoltai T, Finger L (1966) Refinement of the hematite structure. Am Mineral 51:123–129

    Google Scholar 

  • Bonnin D, Calas G, Suquet H, Pezerat H (1985) Sites occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys Chem Minerals 12:55–64

    Google Scholar 

  • Bunker G (1983) Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instrum Methods 207:437–444

    Google Scholar 

  • Bunker G, Stern EA (1984) Experimental study of multiple scattering in x-ray absorption near-edge structure. Phys Rev Letters 52,22:1990–1993

    Google Scholar 

  • Burns RG, Burns VM (1977) Mineralogy of manganese nodules. In: “Marine Manganese Deposits”, Glasby GP (Ed) Elsevier:85–148

  • Burns, RG, Burns VM (1979) Manganese oxides. In: Burns RG (Ed) Marine Minerals, p 1–46. Reviews of Mineralogy, Vol. 6. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  • Byström AM (1949) The crystal structure of ramsdellite, an orthorhombic modification of MnO2. Acta Chem Scand 3:163–173

    Google Scholar 

  • Byström A, Byström AM (1950) The crystal structure of hollandite, the related manganese oxide minerals, and αMnO2. Acta Crystallogr 3:146–154

    Google Scholar 

  • Carlson L, Schwertmann U (1980) Natural occurrence of feroxyhyte (δ′-FeOOH). Clays Clay Miner 28,4:272–280

    Google Scholar 

  • Chukhrov FV, Zvyagin BB, Yermilova LP, Gorshkov AI (1976) Mineralogical criteria in the origin of marine iron-manganese nodules. Mineral Deposita 11:24–32

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Sivtsov AV, Berezovskaya VV (1978) Structural varieties of todorokite. Izv Akad Nauk Kaz SSSR, Ser Geol 12:86–95

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Sivtsov AV, Berezovskaya VV (1979a) New data on natural todorokites. Nature 278:631–632

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Beresovskaya VV, Sivtsov AV (1979b) Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits. Miner Deposita 14:249–261

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AI, Dikov YuP (1980a) Crystallochemical nature of Ni asbolan. Izv Akad Nauk Kaz SSSR, Ser Geol 9:108–120

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AI, Rudnitskaya YeS (1980b) Crystallochemical nature of Co-Ni asbolan. An SSSR Izv, Ser Geol 6:73–81 (Trans Internat Geol Rev 24:598–604 (1982))

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Sivtsov AV (1981) A new structural variety of todorokite. Izs Akad Nauk Kaz SSSR, Ser Geol 5:88–91

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Drits VA, Sivtsov AI, Dikov YuP (1982) New structural variety of asbolite. Izv Akad Nauk SSSR, Ser Geol 6:69–77

    Google Scholar 

  • Chukhrov FV, Gorshkov VA, Drits VA, Shterenberg Ye, Sivtsov AV, Sakharov BA (1983) Mixed-layer asbolite-buserite minerals and asbolites in oceanic iron-manganese nodules. AN SSR Izvest 5:91–99 (Trans Internat Geol Rev 25,7,1983)

    Google Scholar 

  • Chukhrov FV, Sakharov AI, Gorshkov AI, Drits VA, Dikov YuP (1985a) Crystal structure of birnessite from the Pacific ocean. Izvest AN SSSR, Ser Geol 8:66–73 (Trans Internat Geol Rev 27,9:1082–1088 (1985))

    Google Scholar 

  • Chukhrov FV, Gorshkov AI, Drits VA, Dikov YuP (1985b) Structural varieties of todorokite. Izvest AN SSSR, Ser Geol 11:61–71 (Trans Internat Geol Rev 27,12:1481–1491 (1985))

    Google Scholar 

  • Combes JM, Manceau A, Calas G (1986) Study of the local structure in poorly-ordered precursors of iron oxi-hydroxides. J Phys (Paris) C8 47,2:697–701

    Google Scholar 

  • Combes JM, Manceau A, Calas G, Bottero JY (1988) The pathway of formation of hematite: a topological approach by x-ray absorption spectroscopy. Geochemica Cosmochem Acta (submitted)

  • Crozier ED, Seary AJ (1980) Asymmetric effects in the extended X-ray absorption fine structure analysis of solid and liquid zinc. Can J Phys 58:1388–1399

    Google Scholar 

  • de Crescenzi M, Antonangeli F, Bellini C, Rosei R (1983) Temperature induced asymmetric effects in the surface extended energy loss fine structure of Ni(100). Solid State Commun 46,12:875–880

    Google Scholar 

  • de Wolff PM (1959) Interpretation of some γMnO2 diffraction pattern. Acta Crystallogr 12:341–345

    Google Scholar 

  • Drits VA, Petrova VV, Gorshkov AI, Svalnov VN, Sokolova AL, Sivtsov AV, Karpova GV (1985) Mn minerals from iron nodules found in sediments in central part of Pacific ocean and their postsedimentation transformation. Lithologia i poleznye iskopaemye (in russian)

  • Eisenberger P, Brown G (1979) The study of disordered systems by EXAFS: limitations. Solid State Commun 29:481–484

    Google Scholar 

  • Eisenberger P, Lengeler B (1980) Extended x-ray absorption fine-structure determination of coordination numbers: limitations. Phys Review B 22,8:3551–3562

    Google Scholar 

  • Giovanoli R, Maurer R, Feitnecht W (1967) Zur Struktur des γMnO2. Helv Chem Acta 50:1072–1080

    Google Scholar 

  • Giovanoli R (1980) Vernadite is random-stacked birnessite. Miner Deposita 15:251–253

    Google Scholar 

  • Goulon J, Cortes R, Retournard A, Georges A, Battioni JP, Frety R, Moraweck B (1984) Soft x-ray absorption measurements at the K-edges of sulphur and chlorine. In “EXAFS and NEAR Edge Structure III” Springer, Berlin Heidelberg New York. Proc Inter Conf Stanford 449–451

    Google Scholar 

  • Laudy JA, de Wolff PM (1963) X-ray investigation of the δ-β transformation of MnO2. Appl Sci Res B10:157–168

    Google Scholar 

  • Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended x-ray absorption fine structure-its strengths and limitations as a structural tool. Rev Mod Phys 53,4:769–805

    Google Scholar 

  • Llorca S (1986) Les concentrations cobaltifères supergènes en Nouvelle Calédonie: géologie, minéralogie. Thèse de l'Université de Toulouse. 90p

  • Llorca S (1987) Nouvelles données sur la composition et la structure des lithiophorites, d'après des échantillons de Nouvelle-Calédonie. Compte-Rendu Acad Sciences Paris 304,II,1:15–18

    Google Scholar 

  • Manceau A, Calas G (1986) Nickel-bearing clay minerals. 2. Intra-crystalline distribution of nickel: a x-ray absorption study. Clay Miner 21,2:341–360

    Google Scholar 

  • Manceau A, Llorca S, Calas G (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochem Cosmochem Acta 51:105–113

    Google Scholar 

  • Miura H (1986) The crystal structure of hollandite. Miner J 13,3:119–129

    Google Scholar 

  • Murad E (1979) Mössbauer and x-ray data on βFeOOH (akaganeite). Clay Miner 14:273

    Google Scholar 

  • Olès A, Szytula A, Wanic A (1970) Neutron diffraction study of γ-FeOOH. Phys Status Solidi 41:173–177

    Google Scholar 

  • Ostwald J (1984) Ferriginous vernadite in an Indian Ocean ferromanganese nodule. Geol Mag 121,5:483–488

    Google Scholar 

  • Patrat G, de Bergevin F, Pernet M, Joubert JC (1983) Structure locale de δ-FeOOH. Acta Crystallogr B39:165–170

    Google Scholar 

  • Pauling L, Kamb B (1982) The crystal structure of lithiophorite. Am Mineral 67:817–821

    Google Scholar 

  • Perseil EA, Giovanoli R (1982) Étude comparative de la todorokite d'Ambollas (Pyrénées Orientales), des manganates à 10 Å rencontrés dans les nodules polymétalliques des océans et des produits de synthèse. Compte-Rendu Acad Sciences Paris Sér II,294:199–202

    Google Scholar 

  • Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation dispacements in hollandites: structure refinements of hollandite, cryptomelane and priderire. Acta Crystallogr B38:1056–1065

    Google Scholar 

  • Rask JH, Miner BA, Buseck PR (1987) Determination of manganese oxidation states in solids by electron energy loss spectroscopy. Ultramicroscopy (to press)

  • Szytula A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W (1968) Neutron diffraction studies of α-FeOOH. Phys Status Solidi 26:429–434

    Google Scholar 

  • Szytula A, Balanda M, Dimitrijevic Z (1970) Neutron diffraction studies of β-FeOOH. Phys Status Solidi 3:1033–1037

    Google Scholar 

  • Teo BK, Lee PA (1980) Ab initio calculation of amplitude and phase function for Extended X-ray absorption fine structure (EXAFS) spectroscopy. J Am Chem Society 101:2815–2830

    Google Scholar 

  • Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458

    Google Scholar 

  • Turner S, Buseck PR (1981) Todorokites: a family of naturally occuring manganese oxide. Science 212:1024–1027

    Google Scholar 

  • Turner S, Siegel MD, Buseck PR (1982) Structural features of todorokite intergrowths in manganese nodules. Science 296:841–842

    Google Scholar 

  • Turner S, Buseck PR (1983) Defects in nsutite (γMnO2) and dry-cell battery efficiency. Nature 304, 5922:143–146

    Google Scholar 

  • Vicat J, Fanchon E, Strobel P, Duc Tran Qui (1986) The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallogr B42:162–167

    Google Scholar 

  • Wadsley AD (1952) The structure of lithiophorite, (Al, Li) MnO2(OH)2. Acta Crystallogr 5:676–680

    Google Scholar 

  • Wadsley AD (1953) The crystal structure of psilomelane, (Ba, H2O)2Mn5O10. Acta Crystallogr 6:433–438

    Google Scholar 

  • Wadsley AD (1955) The crystal structure of chalcophanite ZnMn3O7.3H2O Acta Crystallogr 8:165–172

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manceau, A., Combes, J.M. Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS. Phys Chem Minerals 15, 283–295 (1988). https://doi.org/10.1007/BF00307518

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307518

Keywords

Navigation