Physics and Chemistry of Minerals

, Volume 15, Issue 3, pp 283–295 | Cite as

Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS

  • A. Manceau
  • J. M. Combes
Article

Abstract

The structure of Mn and Fe oxides and oxyhydroxides has been probed by EXAFS. It is shown that EXAFS spectroscopy is sensitive to the nature of interpolyhedral linkages relying on metal-two nearest metal distances. Spectra recorded at 290 K and 30 K indicate that intercationic distances can be determined by EXAFS with a good accuracy (0.02 Å) assuming a purely Gaussian distribution function, even at room temperature. Although the accuracy on atomic numbers determination is fair for these disordered systems, EXAFS can differentiate structures with contrasted edge- over corner-sharing ratio like pyrolusite, ramsdellite, todorokite and lithiophorite or lepidocrocite and goethite. A direct application of this result has shown that the proportion of pyrolusite domains within the lattice of nsutite from Ghana is equal to 35±15 percent. The systematic study of Mn dioxides also put forward the sensitivity of EXAFS to the presence of corner-sharing octahedra, with a detection limit found to be less than 8 percent. In spite of their similar XRD patterns, the EXAFS study of todorokite and asbolane confirms that they possess a distinct structure; that is, a tunnel structure for the former and a layered structure for the second.

Such a topological approach has been used to probe the structure of ferruginous vernadite; a highly disordered iron-bearing Mn oxide. Fe and Mn K-edges EXAFS spectra are very dissimilar, traducing a different short range order. The Mn phase is constituted by MnO2 layers. Its large local structural order contrasts with the short range disorder of the iron phase. This hydrous Fe oxyhydroxide is constituted by face-, edge- and corner-sharing octahedra. This iron phase possesses the same local order as feroxy-hyte, but is long range disordered. The presence of face-sharing Fe(O,OH)6 octahedra prevents its direct solid-state transformation into well crystallized oxyhydroxides, and explains the necessary dissolution-reprecipitation mechanism generally invoked for the hydrous ferric gel → goethite transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrhenius G, Cheung K, Crane S, Fisk M, Frazer J, Korkisch J, Mellin T, Nakao S, Tsai A, Wolf G (1979) Counterions in marine manganates. Colloq Int CNRS 289:333–356Google Scholar
  2. Blake RL, Hessevick RE, Zoltai T, Finger L (1966) Refinement of the hematite structure. Am Mineral 51:123–129Google Scholar
  3. Bonnin D, Calas G, Suquet H, Pezerat H (1985) Sites occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys Chem Minerals 12:55–64Google Scholar
  4. Bunker G (1983) Application of the ratio method of EXAFS analysis to disordered systems. Nucl Instrum Methods 207:437–444Google Scholar
  5. Bunker G, Stern EA (1984) Experimental study of multiple scattering in x-ray absorption near-edge structure. Phys Rev Letters 52,22:1990–1993Google Scholar
  6. Burns RG, Burns VM (1977) Mineralogy of manganese nodules. In: “Marine Manganese Deposits”, Glasby GP (Ed) Elsevier:85–148Google Scholar
  7. Burns, RG, Burns VM (1979) Manganese oxides. In: Burns RG (Ed) Marine Minerals, p 1–46. Reviews of Mineralogy, Vol. 6. Mineralogical Society of America, Washington, D.C.Google Scholar
  8. Byström AM (1949) The crystal structure of ramsdellite, an orthorhombic modification of MnO2. Acta Chem Scand 3:163–173Google Scholar
  9. Byström A, Byström AM (1950) The crystal structure of hollandite, the related manganese oxide minerals, and αMnO2. Acta Crystallogr 3:146–154Google Scholar
  10. Carlson L, Schwertmann U (1980) Natural occurrence of feroxyhyte (δ′-FeOOH). Clays Clay Miner 28,4:272–280Google Scholar
  11. Chukhrov FV, Zvyagin BB, Yermilova LP, Gorshkov AI (1976) Mineralogical criteria in the origin of marine iron-manganese nodules. Mineral Deposita 11:24–32Google Scholar
  12. Chukhrov FV, Gorshkov AI, Sivtsov AV, Berezovskaya VV (1978) Structural varieties of todorokite. Izv Akad Nauk Kaz SSSR, Ser Geol 12:86–95Google Scholar
  13. Chukhrov FV, Gorshkov AI, Sivtsov AV, Berezovskaya VV (1979a) New data on natural todorokites. Nature 278:631–632Google Scholar
  14. Chukhrov FV, Gorshkov AI, Beresovskaya VV, Sivtsov AV (1979b) Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits. Miner Deposita 14:249–261Google Scholar
  15. Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AI, Dikov YuP (1980a) Crystallochemical nature of Ni asbolan. Izv Akad Nauk Kaz SSSR, Ser Geol 9:108–120Google Scholar
  16. Chukhrov FV, Gorshkov AI, Vitovskaya IV, Drits VA, Sivtsov AI, Rudnitskaya YeS (1980b) Crystallochemical nature of Co-Ni asbolan. An SSSR Izv, Ser Geol 6:73–81 (Trans Internat Geol Rev 24:598–604 (1982))Google Scholar
  17. Chukhrov FV, Gorshkov AI, Sivtsov AV (1981) A new structural variety of todorokite. Izs Akad Nauk Kaz SSSR, Ser Geol 5:88–91Google Scholar
  18. Chukhrov FV, Gorshkov AI, Drits VA, Sivtsov AI, Dikov YuP (1982) New structural variety of asbolite. Izv Akad Nauk SSSR, Ser Geol 6:69–77Google Scholar
  19. Chukhrov FV, Gorshkov VA, Drits VA, Shterenberg Ye, Sivtsov AV, Sakharov BA (1983) Mixed-layer asbolite-buserite minerals and asbolites in oceanic iron-manganese nodules. AN SSR Izvest 5:91–99 (Trans Internat Geol Rev 25,7,1983)Google Scholar
  20. Chukhrov FV, Sakharov AI, Gorshkov AI, Drits VA, Dikov YuP (1985a) Crystal structure of birnessite from the Pacific ocean. Izvest AN SSSR, Ser Geol 8:66–73 (Trans Internat Geol Rev 27,9:1082–1088 (1985))Google Scholar
  21. Chukhrov FV, Gorshkov AI, Drits VA, Dikov YuP (1985b) Structural varieties of todorokite. Izvest AN SSSR, Ser Geol 11:61–71 (Trans Internat Geol Rev 27,12:1481–1491 (1985))Google Scholar
  22. Combes JM, Manceau A, Calas G (1986) Study of the local structure in poorly-ordered precursors of iron oxi-hydroxides. J Phys (Paris) C8 47,2:697–701Google Scholar
  23. Combes JM, Manceau A, Calas G, Bottero JY (1988) The pathway of formation of hematite: a topological approach by x-ray absorption spectroscopy. Geochemica Cosmochem Acta (submitted)Google Scholar
  24. Crozier ED, Seary AJ (1980) Asymmetric effects in the extended X-ray absorption fine structure analysis of solid and liquid zinc. Can J Phys 58:1388–1399Google Scholar
  25. de Crescenzi M, Antonangeli F, Bellini C, Rosei R (1983) Temperature induced asymmetric effects in the surface extended energy loss fine structure of Ni(100). Solid State Commun 46,12:875–880Google Scholar
  26. de Wolff PM (1959) Interpretation of some γMnO2 diffraction pattern. Acta Crystallogr 12:341–345Google Scholar
  27. Drits VA, Petrova VV, Gorshkov AI, Svalnov VN, Sokolova AL, Sivtsov AV, Karpova GV (1985) Mn minerals from iron nodules found in sediments in central part of Pacific ocean and their postsedimentation transformation. Lithologia i poleznye iskopaemye (in russian)Google Scholar
  28. Eisenberger P, Brown G (1979) The study of disordered systems by EXAFS: limitations. Solid State Commun 29:481–484Google Scholar
  29. Eisenberger P, Lengeler B (1980) Extended x-ray absorption fine-structure determination of coordination numbers: limitations. Phys Review B 22,8:3551–3562Google Scholar
  30. Giovanoli R, Maurer R, Feitnecht W (1967) Zur Struktur des γMnO2. Helv Chem Acta 50:1072–1080Google Scholar
  31. Giovanoli R (1980) Vernadite is random-stacked birnessite. Miner Deposita 15:251–253Google Scholar
  32. Goulon J, Cortes R, Retournard A, Georges A, Battioni JP, Frety R, Moraweck B (1984) Soft x-ray absorption measurements at the K-edges of sulphur and chlorine. In “EXAFS and NEAR Edge Structure III” Springer, Berlin Heidelberg New York. Proc Inter Conf Stanford 449–451Google Scholar
  33. Laudy JA, de Wolff PM (1963) X-ray investigation of the δ-β transformation of MnO2. Appl Sci Res B10:157–168Google Scholar
  34. Lee PA, Citrin PH, Eisenberger P, Kincaid BM (1981) Extended x-ray absorption fine structure-its strengths and limitations as a structural tool. Rev Mod Phys 53,4:769–805Google Scholar
  35. Llorca S (1986) Les concentrations cobaltifères supergènes en Nouvelle Calédonie: géologie, minéralogie. Thèse de l'Université de Toulouse. 90pGoogle Scholar
  36. Llorca S (1987) Nouvelles données sur la composition et la structure des lithiophorites, d'après des échantillons de Nouvelle-Calédonie. Compte-Rendu Acad Sciences Paris 304,II,1:15–18Google Scholar
  37. Manceau A, Calas G (1986) Nickel-bearing clay minerals. 2. Intra-crystalline distribution of nickel: a x-ray absorption study. Clay Miner 21,2:341–360Google Scholar
  38. Manceau A, Llorca S, Calas G (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochem Cosmochem Acta 51:105–113Google Scholar
  39. Miura H (1986) The crystal structure of hollandite. Miner J 13,3:119–129Google Scholar
  40. Murad E (1979) Mössbauer and x-ray data on βFeOOH (akaganeite). Clay Miner 14:273Google Scholar
  41. Olès A, Szytula A, Wanic A (1970) Neutron diffraction study of γ-FeOOH. Phys Status Solidi 41:173–177Google Scholar
  42. Ostwald J (1984) Ferriginous vernadite in an Indian Ocean ferromanganese nodule. Geol Mag 121,5:483–488Google Scholar
  43. Patrat G, de Bergevin F, Pernet M, Joubert JC (1983) Structure locale de δ-FeOOH. Acta Crystallogr B39:165–170Google Scholar
  44. Pauling L, Kamb B (1982) The crystal structure of lithiophorite. Am Mineral 67:817–821Google Scholar
  45. Perseil EA, Giovanoli R (1982) Étude comparative de la todorokite d'Ambollas (Pyrénées Orientales), des manganates à 10 Å rencontrés dans les nodules polymétalliques des océans et des produits de synthèse. Compte-Rendu Acad Sciences Paris Sér II,294:199–202Google Scholar
  46. Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation dispacements in hollandites: structure refinements of hollandite, cryptomelane and priderire. Acta Crystallogr B38:1056–1065Google Scholar
  47. Rask JH, Miner BA, Buseck PR (1987) Determination of manganese oxidation states in solids by electron energy loss spectroscopy. Ultramicroscopy (to press)Google Scholar
  48. Szytula A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W (1968) Neutron diffraction studies of α-FeOOH. Phys Status Solidi 26:429–434Google Scholar
  49. Szytula A, Balanda M, Dimitrijevic Z (1970) Neutron diffraction studies of β-FeOOH. Phys Status Solidi 3:1033–1037Google Scholar
  50. Teo BK, Lee PA (1980) Ab initio calculation of amplitude and phase function for Extended X-ray absorption fine structure (EXAFS) spectroscopy. J Am Chem Society 101:2815–2830Google Scholar
  51. Turner S, Buseck PR (1979) Manganese oxide tunnel structures and their intergrowths. Science 203:456–458Google Scholar
  52. Turner S, Buseck PR (1981) Todorokites: a family of naturally occuring manganese oxide. Science 212:1024–1027Google Scholar
  53. Turner S, Siegel MD, Buseck PR (1982) Structural features of todorokite intergrowths in manganese nodules. Science 296:841–842Google Scholar
  54. Turner S, Buseck PR (1983) Defects in nsutite (γMnO2) and dry-cell battery efficiency. Nature 304, 5922:143–146Google Scholar
  55. Vicat J, Fanchon E, Strobel P, Duc Tran Qui (1986) The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures. Acta Crystallogr B42:162–167Google Scholar
  56. Wadsley AD (1952) The structure of lithiophorite, (Al, Li) MnO2(OH)2. Acta Crystallogr 5:676–680Google Scholar
  57. Wadsley AD (1953) The crystal structure of psilomelane, (Ba, H2O)2Mn5O10. Acta Crystallogr 6:433–438Google Scholar
  58. Wadsley AD (1955) The crystal structure of chalcophanite ZnMn3O7.3H2O Acta Crystallogr 8:165–172Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. Manceau
    • 1
  • J. M. Combes
    • 1
  1. 1.Laboratoire de Minéralogie-CristallographieUniversités Paris 6 et 7, et CNRS UA09ParisFrance

Personalised recommendations