Skip to main content
Log in

An ultrastructural study of the synaptic densities, nematosomes, neurotubules, neurofilaments and of a further three-dimensional filamentous network as disclosed by the E-PTA staining procedure

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

After the staining of nervous tissue with phosphotungstic acid in absolute ethanol (E-PTA), a selective opacification occurs at certain specific sites, while other structures, especially the plasma and intra-cellular membranes, remain electron-lucent. Among those selectively stained sites, our studies have been focussed on: (1) The dense synaptic material consisting of several presynaptic clumps, termed projections, an intrasynaptic dense line and a subsynaptic web from which fine fibrillar wisps extend into the surrounding ground substance; (2) Neurofilaments and neurotubules, the surface of which is bristled by numerous side-arms; (3) A microfilamentous network intertwines the neurotubules, the neurofilaments and the mitochondria in the dendrites and axon, and is also connected to the E-PTA dense undercoating delineating the inner aspect of the plasma membrane and to the fine wisps emanating from the subsynaptic web. A three-dimensional microfilamentous latticework is thus formed in the nerve cell processes; (4) Dense cytoplasmic inclusions, termed nematosomes, which are usually located in the ground substance of the perikaryon among or in the vicinity of clusters of ribosomes. Tiny microfilaments emanate from the peripheral strands of these bodies. The presence of basic residues in the chains of structural proteins of which consist the subsynaptic web and the nematosome is plausible, since the specificity of the E-PTA staining procedure for the detection of basic residues has previously been put forth. The occurrence of a three-dimensional microfilamentous network in the nerve cell processes led us to hypothesize that it plays a role in translocation of materials. It may provide the motive force for the axoplasmic transport, for instance, with the neurotubules, as well as, plausibly, with the neurofilaments, serving as attachment sites and guideways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akert, K., Moor, H., Pfenninger, K., Sandri, C.: Contributions of new impregnation methods and freeze etching to the problems of synaptic fine structure. Progr. Brain Res. 31, 223–240 (1969)

    Google Scholar 

  • Akert, K., Pfenninger, K.: Synaptic fine structure and neural dynamics. Symp. Int. Soc. Cell Biol. 8, 245–260 (1969)

    Google Scholar 

  • Alfert, M., Geschwind, I.I.: A selective staining method for the basic proteins of cell nuclei. Proc. nat. Acad. Sci. (Wash.) 39, 991–999 (1953)

    Google Scholar 

  • Behnke, O., Kristensen, B.I., Nielsen, L.E.: Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J. Ultrastruct. Res. 37, 351–369 (1971)

    Google Scholar 

  • Bloom, F.E., Aghajanian, G.K.: Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. J. Ultrastruct. Res. 22, 361–375 (1968)

    Google Scholar 

  • Bodian, D.: Development of fine structure of spinal cord in monkey fetuses. I. The motoneuron neuropil at the time of the onset of reflex activity. Bull. Johns Hopk. Hosp. 119, 129–133 (1966)

    Google Scholar 

  • Borisy, G.G., Taylor, E.W.: The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J. Cell Biol. 34, 525–533 (1967)

    Google Scholar 

  • Borisy, G.G., Taylor, E.W.: The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967)

    Google Scholar 

  • Burton, P.R., Fernandez, H.L.: Delineation by lanthanum staining of filamentous elements associated with the surface of axonal microtubules. J. Cell Sci. 12, 567–584 (1973)

    Google Scholar 

  • Chou, S.M., Hartmann, H.: Electron microscopy of focal neuroaxonal lesions produced by β-β'-iminodiproprionitrile (IDPN) in rats. Acta neuropath. (Berl.) 4, 590–603 (1965)

    Google Scholar 

  • Davison, P.F.: Microtubules and neurofilaments: Possible implications in axoplasmic transport. Advanc. Biochem. Psychopharmacol. 2, 289–302 (1970)

    Google Scholar 

  • Davison, P.F., Huneeus, F.C.: Fibrillar proteins from squid axons. II. Microtubule protein. J. molec. Biol. 52, 429–439 (1970)

    Google Scholar 

  • Dirksen, E.R.: Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J. Cell Biol. 51, 286–302 (1971)

    Google Scholar 

  • Doggenweiber, C.F., Frenk, S.: Staining properties of lanthanum on cell membranes. Proc. nat. Acad. Sci. (Wash.) 53, 425–430 (1965)

    Google Scholar 

  • Duffy, P.E., Tennyson, V.M.: Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus caeruleus in Parkinson's disease. J. Neuropath. exp. Neurol. 24, 398–414 (1965)

    Google Scholar 

  • Dutton, G.R., Barondes, S.: Microtubular protein: Synthesis and metabolism in developing brain. Science 166, 1637–1638 (1969)

    Google Scholar 

  • Exss, R.E., Summer, G.K.: Basic proteins in neurons containing fibrillary deposits. Brain Res. 49, 151–164 (1973)

    Google Scholar 

  • Fernandez, H.L., Burton, P.R., Samson, F.E.: Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J. Cell Biol. 51, 176–192 (1971)

    Google Scholar 

  • Gray, E.G.: Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. (Lond.) 97, 101–106 (1963)

    Google Scholar 

  • Greenstein, J.P., Winitz, M.: Chemistry of the amino acids, vol. 1, p. 650–653. New York-London: John Wiley 1961

    Google Scholar 

  • Grillo, M.A.: Cytoplasmic inclusions resembling nucleoli in sympathetic neurons of adult rats. J. Cell Biol. 45, 100–117 (1970)

    Google Scholar 

  • Hodge, A.J., Schmitt, F.O.: The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc. nat. Acad. Sci. (Wash.) 46, 186–197 (1960)

    Google Scholar 

  • Huneeus, F.C., Davison, P.F.: Fibrillar proteins from squid axons. I. Neurofilament protein. J. molec. Biol. 52, 415–428 (1970)

    Google Scholar 

  • Huxley, H.E.: Some aspects of staining of tissue for sectioning. J. Roy. micro. Soc. 78, 30–32 (1958)

    Google Scholar 

  • Ishikawa, H., Bischoff, R., Holtzer, H.: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43, 312–328 (1969)

    Google Scholar 

  • Kühn, K. von, Grassmann, W., Hofmann, U.: Die elektronenmikroskopische „Anfärbung“ des Kollagens und die Ausbildung einer hochunterteilten Querstreifung. Z. Naturforsch. 13b, 154–160 (1957)

    Google Scholar 

  • Lampert, P., Blumberg, J.M., Pentschew, A.: An electron microscope study of dystrophic axons in the gracile and cuneate nuclei of vitamine E—deficient rats. Axonal dystrophy in vitamin E deficiency. J. Neuropath. exp. Neurol. 23, 60–77 (1964)

    Google Scholar 

  • Lane, N.J., Treherne, J.E.: Lanthanum staining of neurotubules in axons from cockroach ganglia. J. Cell Sci. 7, 217–231 (1970)

    Google Scholar 

  • Le Beux, Y.J.: An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland, the preoptic recess and the anterior part of the suprachiasmatic area. I. Cytoplasmic inclusions resembling nucleoli. Z. Zellforsch. 114, 404–440 (1971)

    Google Scholar 

  • Le Beux, Y.J.: An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland. II. Nerve endings. Z. Zellforsch. 127, 439–461 (1972a)

    Google Scholar 

  • Le Beux, Y.J.: An ultrastructural study of a cytoplasmic filamentous body, termed nematosome, in the neurons of the rat and cat substantia nigra. The association of nematosomes with the other cytoplasmic organelles in the neuron. Z. Zellforsch. 133, 289–325 (1972b)

    Google Scholar 

  • Le Beux, Y.J., Langelier, P., Poirier, L.J.: Further ultrastructural data on the cytoplasmic nucleolus resembling bodies or nematosomes. Their relationship with the subsynaptic web and a cytoplasmic filamentous network. Z. Zellforsch. 118, 147–155 (1971)

    Google Scholar 

  • Lehninger, A.L.: The neuronal membrane. Proc. nat. Acad. Sci. (Wash.) 60, 1069–1080 (1968)

    Google Scholar 

  • Lison, L.: Histochimie et cytochimie animales. Principes et méthodes, vol. 1, p. 322–333 et 343–344. Paris: Gauthier-Villars, 1960

    Google Scholar 

  • Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961)

    Google Scholar 

  • Luft, J.H.: Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 171, 347–368 (1971)

    Google Scholar 

  • McIlvain, H.: Characterization of constituents of blood plasma and of the brain which restore excitability to isolated cerebral tissues. Biochem. J. 76, 16P (1960)

  • McIlvain, H.: Characterization of naturally occuring materials which restore excitability to isolated cerebral tissues. Biochem. J. 78, 24–32 (1961)

    Google Scholar 

  • Metuzals, J.: Configuration of a filamentous network in the axoplasm of the squid (Loligo pealii L.) giant nerve fiber. J. Cell Biol. 43, 480–505 (1969)

    Google Scholar 

  • Metuzals, J., Izzard, C.S.: Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy. J. Cell Biol. 43, 456–479 (1969)

    Google Scholar 

  • Palay, S.L., Sotelo, C., Peters, A., Orkand, P.M.: The axon hillock and the initial segment. J. Cell Biol. 38, 193–201 (1968)

    Google Scholar 

  • Pease, D.C.: Polysaccharides associated with the exterior surface of epithelial cells: Kidney, intestine, brain. J. Ultrastruct. Res. 15, 555–588 (1966)

    Google Scholar 

  • Peracchia, C.: Unmasking of SH groups in certain axonal membranes as a result of electrical stimulation. J. Cell Biol. 43, 102a (1969)

  • Peters, A., Vaughn, J.E.: Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32, 113–119 (1967)

    Google Scholar 

  • Pfenninger, K.H.: The cytochemistry of synaptic densities. I. An analysis of the bismuth iodide impregnation method. J. Ultrastruct. Res. 34, 103–122 (1971a)

    Google Scholar 

  • Pfenninger, K.H.: The cytochemistry of synaptic densities. II. Proteinaceous components and mechanism of synaptic connectivity. J. Ultrastruct. Res. 35, 451–475 (1971b)

    Google Scholar 

  • Pfenninger, K., Sandri, C., Akert, K., Eugster, C.H.: Contribution to the problem of structural organization of the presynaptic area. Brain Res. 12, 10–18 (1969)

    Google Scholar 

  • Quintarelli, G., Cifonelli, J.A., Zito, R.: On phosphotungstic acid staining. II. J. Histochem. Cytochem. 19, 648–653 (1971)

    Google Scholar 

  • Quintarelli, G., Zito, R., Cifonelli, J.A.: On phosphotungstic acid staining. I. J. Histochem. Cytochem. 19, 641–647 (1971)

    Google Scholar 

  • Rostgaard, J., Kristensen, B.I., Nielsen, L.E.: Characterization of 60 Å filaments in endothelial, epithelial, and smooth muscle cells of rat by reaction with heavy meromyosin. J. Ultrastruct. Res. 38, 207 (1972a)

    Google Scholar 

  • Rostgaard, J., Kristensen, B.I., Nielsen, L.E.: Electron microscopy of filaments in the basal part of rat kidney tubule cells, and their in situ interaction with heavy meromyosin. Z. Zellforsch. 132, 497–521 (1972b)

    Google Scholar 

  • Roy, S., Wolman, L.: Ultrastructural observations in Parkinsonism. J. Path. 99, 39–44 (1969)

    Google Scholar 

  • Sabatini, D.D., Bensch, K., Barrnett, R.J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963)

    Google Scholar 

  • Schmitt, F.O.: Fibrous proteins—neuronal organelles. Proc. nat. Acad. Sci. (Wash.) 60, 1092–1101 (1968)

    Google Scholar 

  • Schmitt, F.O., Samson, F.E.: Neuronal fibrous proteins. Neurosci. Res. Symp. Sum. 3, 301–403 (1969).

    Google Scholar 

  • Schochet, S.S., Jr., Hardman, J.M., Ladewig, P.P., Earle, K.M.: Intraneuronal conglomerates in sporadic motor neuron disease. Arch. Neurol. (Chic.) 20, 548–553 (1969)

    Google Scholar 

  • Schochet, S.S., Jr., Lampert, P.W., Earle, K.M.: Neuronal changes induced by intrathecal vincristine sulfate. J. Neuropath. exp. Neurol. 27, 645–658 (1968)

    Google Scholar 

  • Shelanski, M.L., Taylor, E.W.: Isolation of protein subunit from microtubules. J. Cell Biol. 34, 549–554 (1967)

    Google Scholar 

  • Shelanski, M.L., Wisniewski, H.: Neurofibrillary degeneration induced by vincristine therapy. Arch. Neurol. (Chic.) 20, 199–206 (1969)

    Google Scholar 

  • Sheridan, W.F., Barrnett, R.J.: Cytochemical studies on chromosome ultrastructure. J. Ultrastruct. Res. 27, 216–229 (1969)

    Google Scholar 

  • Silverman, L., Glick, D.: The reactivity and staining of tissue proteins with phosphotungstic acid. J. Cell Biol. 40, 761–767 (1969)

    Google Scholar 

  • Spyropoulos, C.S.: Cytoplasmic pH of nerve fibers. J. Neurochem. 5, 185–194 (1960)

    Google Scholar 

  • Tani, E., Ametani, T.: Substructure of microtubules in brain nerve cells as revealed by ruthenium red. J. Cell Biol. 46, 159–165 (1970)

    Google Scholar 

  • Terry, R.D., Pena, C.: Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis. J. Neuropath. exp. Neurol. 24, 200–210 (1965)

    Google Scholar 

  • Venable, J.H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407 (1965)

    Google Scholar 

  • Watson, M.L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958)

    Google Scholar 

  • Weisenberg, R.C., Borisy, G.G., Taylor, E.W.: The colchicine—binding protein of mammalian brain and its relation to microtubules. Biochemistry 7, 4466–4479 (1968)

    Google Scholar 

  • Weiss, P.A.: Neuronal dynamics and neuroplasmic (“axonal”) flow. Symp. Int. Soc. Cell Biol. 8, 3–34 (1969)

    Google Scholar 

  • Wisniewski, H., Shelanski, M.L., Terry, R.D.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J. Cell Biol. 38, 224–229 (1968)

    Google Scholar 

  • Wisniewski, H., Terry, H.D.: Experimental colchicine encephalopathy. I. Induction of neurofibrillary degeneration. Lab. Invest. 17, 577–587 (1967)

    Google Scholar 

  • Wisniewski, H., Terry, R.D., Hirano, A.: Neurofibrillary pathology. J. Neuropath. exp. Neurol. 29, 163–176 (1970)

    Google Scholar 

  • Wuerker, R.B., Palay, S.L.: Neurofilaments and microtubules in anterior horn cells of the rat. Tissue and Cell. 1, 387–402 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant MA-3448 from The Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Beux, Y.J. An ultrastructural study of the synaptic densities, nematosomes, neurotubules, neurofilaments and of a further three-dimensional filamentous network as disclosed by the E-PTA staining procedure. Z.Zellforsch 143, 239–272 (1973). https://doi.org/10.1007/BF00307481

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307481

Key words

Navigation