Skip to main content
Log in

The ascidian myocardium: Sarcoplasmic reticulum and excitation-contraction coupling

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The ascidian myocardium is composed of small striated myoepithelial cells. The sarcoplasmic reticulum (SR) of these cells was reconstructed from serial sections. T-tubules are absent, but subsarcolemmal cisternae of the SR, that may be the counterpart of terminal cisternae, form couplings with the sarcolemma. Longitudinal SR tubules, parallel to the myofilaments, are interconnected near the middle of the A-band and form a transverse collar.

Cinematographic photography of spontaneous contractions in fresh myocardial preparations produced records that could be analyzed frame by frame. Contractions are typically limited to parts of the myofilament field of single cells. They are locally symmetrical with respect to Z-bands; either both A-bands on each side of a Z-band converge on it (contractions), or neither A-band moves with respect to the Z-band.

It is suggested that the spontaneous contractions are the result of local Ca++ release from randomly distributed subsarcolemmal cisternae. It is proposed that the symmetry of contraction is due to a rapid sequestering of Ca++ by the SR collars at the middle of the A-bands and a possible diffusion barrier at that level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, K. M.: The fine structure and electrophysiology of heart muscle injury. J. Cell biol. 46, 455–476 (1970).

    Article  PubMed  Google Scholar 

  • Cloney, R. A., Florey, E.: Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. 89, 250–280 (1968).

    PubMed  Google Scholar 

  • Constantin, L. L., Franzini-Armstrong, C., Podolsky, R.: Localization of calcium-accumulating structures in striated muscle fibers. Science 147, 158–160 (1965).

    PubMed  Google Scholar 

  • Ebashi, S., Lipman, F.: Adenosine triphosphate-linked concentration of calcium ions in a particular fraction of rabbit muscle. J. Cell Biol. 14, 389–400 (1962).

    Article  Google Scholar 

  • Fanburg, B., Finkel, R. M., Martonosi, A.: The role of calcium in the mechanism of relaxation of cardiac muscle. J. biol. Chem. 239, 2298–2306 (1964).

    PubMed  Google Scholar 

  • Fawcett, D. W., McNutt, N. S.: The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell Biol. 42, 1–45 (1969).

    Article  PubMed  Google Scholar 

  • Flood, P. R.: Structure of the segmental trunk muscle in amphioxus with notes on the course and “endings” of the so-called ventral root fibers. Z. Zellforsch. 84, 398–416 (1968).

    Google Scholar 

  • Franzini-Armstrong, C.: Sarcolemmal invaginations and the T-system in skeletal muscle fibers. J. Cell Biol. 19, 24A (1963).

    Google Scholar 

  • Franzini-Armstrong, C.: Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47, 488–499 (1970).

    Article  Google Scholar 

  • Franzini-Armstrong, C.: Studies of the triad. II. Penetration of tracers into the junctional gap. J. Cell Biol. 49, 196–203 (1971).

    Article  PubMed  Google Scholar 

  • Gage, P. W., Eisenberg, R. S.: Action potentials, afterpotentials, and excitation-contraction coupling in frog sartorius fibers without transverse tubules. J. gen. Physiol. 53, 298–310 (1969).

    Article  PubMed  Google Scholar 

  • Hanson, J., Lowy, J.: The structure of the muscle fibers in the translucent part of the adductor of the oyster, Crassostrea angulata. Proc. roy. Soc. B 154, 173–196 (1961).

    Google Scholar 

  • Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc. 23, 909–912 (1964).

    PubMed  Google Scholar 

  • Hoyle, G.: Interpreting muscle function in invertebrates. Pflügers Arch. ges. Physiol. 291, 12–27 (1966).

    Google Scholar 

  • Huxley, A. F., Taylor, R. E.: Local activation of striated muscle fibers. J. Physiol. (Lond.) 144, 426–441 (1958).

    PubMed  Google Scholar 

  • Huxley, H. E.: Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (Lond.) 202, 1067–1071 (1964).

    PubMed  Google Scholar 

  • Jewett, P. H., Sommer, J. R., Johnson, E. A.: Cardiac muscle. Its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J. Cell Biol. 49, 50–65 (1971).

    Article  PubMed  Google Scholar 

  • Johnson, E. A., Sommer, J. R.: A strand of cardiac muscle. J. Cell Biol. 33, 103–129 (1967).

    Article  PubMed  Google Scholar 

  • Kalk, M.: The organization of a tunicate heart. Tissue Cell 2, 99–118 (1970).

    Google Scholar 

  • Kelley, A. M.: Sarcoplasmic reticulum and the transverse tubular system in developing rat intercostal muscle. J. Cell Biol. 43, 65a-66a (1969).

    Google Scholar 

  • Kelley,D., Cahill, M. A.: Skeletal muscle triad junction fine structure; new observations regarding dimples of the sarcoplasmic reticulum terminal cisternae. J. Cell Biol. 43, 66a (1969).

    Google Scholar 

  • Kisch, B.: The ultrastructure of the myocardium of fishes. Exp. Med. Surg. 24, 220–227 (1966).

    PubMed  Google Scholar 

  • Kriebel, M. E.: Electrical characteristics of tunicate heart cell membranes and nexuses. J. gen. Physiol. 52, 46–59 (1968).

    Article  PubMed  Google Scholar 

  • Kushmerick, M. J., Podolsky, R. J.: Ionic mobility in muscle cells. Science 166, 1297–1298 (1969).

    PubMed  Google Scholar 

  • Legato, M. J., Langer, G. A.: The subcellular localization of calcium ion in mammalian myocardium. J. Cell Biol. 41, 401–423 (1969).

    Article  PubMed  Google Scholar 

  • Luft, J. H.: Improvements in epoxy embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Article  PubMed  Google Scholar 

  • Marco, L. A., Nastuk, W. L.: Sarcomeric oscillations in frog skeletal muscle fibers. Science 161, 1357–1358 (1968).

    PubMed  Google Scholar 

  • McNutt, N. S., Fawcett, D. W.: The ultrastructure of the cat myocardium. II. Atrial muscle. J. Cell Biol. 42, 46–67 (1969).

    Article  PubMed  Google Scholar 

  • Mill, P. J., Knapp, M. F.: The fine structure of obliquely striated muscle in the earthworm Lumbricus terrestris Linn. J. Cell Sci. 7, 233–261 (1970).

    PubMed  Google Scholar 

  • Müller, P.: Lokale Kontraktionsauslösung am Herzmuskel. Helv. physiol. pharmacol. Acta 24, C106-C108 (1966).

    Google Scholar 

  • Niedergerke, R.: Movements of calcium in frog heart ventricles at rest and during contracture. J. Physiol. (Lond.) 167, 515–550 (1963).

    Google Scholar 

  • Page, E.: Correlations between electron microscope and physiological observations in heart muscle. J. gen. Physiol. 51, 211–220 (1968).

    Google Scholar 

  • Pasquali-Rouchetti, I.: The organization of the sarcoplasmic reticulum and T-system in the femoral muscle of the houselfy, Musca domestica. J. Cell Biol. 40, 269–272 (1969).

    Article  PubMed  Google Scholar 

  • Peachey, L. D.: Structure of the longitudinal body muscles of amphioxus. J. biophys. biochem. Cytol. 10, (Suppl.), 159–176 (1961).

    PubMed  Google Scholar 

  • Peachey, L. D.: The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 24, 209–231 (1965).

    Article  Google Scholar 

  • Porter, K. R.: The sarcoplasmic reticulum: Its recent history and present status. J. Cell Biol. 10 (Suppl.), 219–226 (1961).

    Article  Google Scholar 

  • Porter, K. R., Palade, G. E.: Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. biophys. biochem. Cytol. 3, 269–300 (1957).

    PubMed  Google Scholar 

  • Revel, J. P.: The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12, 571–588 (1962).

    Article  PubMed  Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Article  PubMed  Google Scholar 

  • Rosenbluth, J.: Obliquely striated muscle. IV. Sarcoplasmic reticulum, contractile apparatus, and endomysium of the body wall muscle of a polychaete, Glycera, in relation to its speed. J. Cell Biol. 36, 245–259 (1968).

    Article  Google Scholar 

  • Rostgaard, J., Behnke, O.: Fine structural localization of adenine nucleoside phosphatase activity in the sarcoplasmic reticulum and the T-system of rat myocardium. J. Ultrastruct. Res. 12, 579–591 (1965).

    PubMed  Google Scholar 

  • Schiaffino, S., Margreth, A.: Coordinated development of the sarcoplasmic reticulum and T-system during postnatal differentiation of rat skeletal muscle. J. Cell Biol. 41, 855–875 (1969).

    Article  PubMed  Google Scholar 

  • Smith, D. S.: Reticular organizations within the striated muscle cell. An historical survey of light microscopic studies. J. Cell Biol. 10, (Suppl.), 61–87 (1961).

    Article  Google Scholar 

  • Smith, P. S.: The organization of flight muscle fibers in the Odonata. J. Cell Biol. 28, 109–126 (1966).

    Article  PubMed  Google Scholar 

  • Sommer, J. R., Johnson, E. A.: Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J. Cell Biol. 36, 497–526 (1968).

    Article  PubMed  Google Scholar 

  • Sperelakis, N.: Ultrastructure of the neurogenic heart of Limulus polyphemus. Z. Zellforsch. 116, 443–463 (1971).

    PubMed  Google Scholar 

  • Sperelakis, N., Rubio, R., Redick, J.: Sharp discontinuity in sarcomere lengths across intercalated discs of fibrillating cat hearts. J. Ultrastruct. Res. 30, 503–532 (1970).

    PubMed  Google Scholar 

  • Staley, N. A., Benson, E. S.: The ultrastructure of frog ventricular muscle and its relationship to mechanisms of excitation-contraction coupling. J. Cell Biol. 38, 99–114 (1968).

    Article  PubMed  Google Scholar 

  • Veratti, E.: Investigations on the fine structure of striated muscle fiber. J. Cell Biol. 10 (Suppl.), 1–59 (1961).

    Article  Google Scholar 

  • Weber, A., Herz, R., Reiss, J.: On the machanism of the relaxing effect of fragmented sarcoplasmic reticulum. J. gen. Physiol. 46, 679–702 (1963).

    Article  PubMed  Google Scholar 

  • Weber, A., Herz, R., Reiss, J.: Study of the kinetics of calcium transport by isolated fragmented SR. Biochem. Z. 345, 329–369 (1966).

    Google Scholar 

  • Winegrad, S.: Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. gen. Physiol. 51, 65–83 (1968).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported in part by an NIH Fellowship (1-F1-GM-40, 488-01) from the National Institute of General Medical Sciences and National Science Foundation Research Grant GB 5394. The authors wish to thank Dr. Albert M. Gordon for his suggestions and stimulating discussion, and for critically reading the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliphant, L.W., Cloney, R.A. The ascidian myocardium: Sarcoplasmic reticulum and excitation-contraction coupling. Z. Zellforsch 129, 395–412 (1972). https://doi.org/10.1007/BF00307296

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307296

Key words

Navigation