Skip to main content
Log in

Summary

1. Phase-contrast microscopy, time-lapse cinematography, electron microscopy and fluorescence histochemistry were used to study neurons in cultured sympathetic ganglia of rat, guinea-pig and embryo chick.

2. There was considerable variation in the morphology and size of neurons in all three species. Many neurons migrated into the outgrowth; those that migrated freely in rat and guinea-pig differed sufficiently from non-migratory neurons to allow a classification into type I (migratory) and type II (non-migratory). Type II neurons appeared to correspond to those seen in situ, but whether type I neurons represent immature or retarded neurons, or are due to culture conditions, is not clear. In the chick, no classification on this basis was possible; instead both migratory and non-migratory neurons showed a large and similar variation in nuclear size.

3. In all three species both migratory and non-migratory neurons remained viable and noradrenaline was demonstrable histochemically for eight weeks (oldest cultures studied). Species differences were found in the extent of outgrowth of nerve fibers and accessory cells.

4. Ultrastructural studies showed processes with features characteristic of sympathetic nerves in situ and of regenerating nerves. Profiles with other ultrastructural features were described and their identity discussed.

5. The action of Nerve Growth Factor (NGF) at 1 unit/ml on sympathetic nerve fibers showed that guinea-pig was the most susceptible and chick the least. In the rat and guinea-pig, NGF increased levels of noradrenaline. NGF did not alter the appearance or relative numbers of type I and II neurons in rat and guinea-pig, but did affect the size distribution of both chick migratory and non-migratory neurons; some chick neurons were insensitive to NGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H.: Mikropinozytose in Zentralnervensystem. Z. Zellforsch. 64, 63–73 (1964).

    Google Scholar 

  • Angeletti, P. U., Levi-Montalcini, R., Caramia, F.: Ultrastructural changes in sympathetic neurons of newborn and adult mice treated with nerve growth factor. J. Ultrastruct. Res. 36, 24–36 (1971).

    Google Scholar 

  • Augusti-Tocco, G., Sato, G. H., Claude, P., Potter, D. D.: Clonal cell lines of neurons. In: Symposia of the International Society for Cell Biology, ed. Padykula, H. A., 9, 109–120 (1970).

  • Bacq, Z. M.: La pharmacologie du système nerveux autonome. Ann. Physiol. Physiochim. Biol. 10, 467–528 (1934).

    Google Scholar 

  • Bennett, T., Malmfors, T.: The adrenergic nervous system of the domestic fowl (Gallus domesticus). Z. Zellforsch. 106, 22–50 (1970).

    Google Scholar 

  • Bleichmar, H., De Robertis, E.: Submicroscopic morphology of the infra red receptor of pit vipers. Z. Zellforsch. 56, 758–761 (1972).

    Google Scholar 

  • Blümcke, S., Niedorf, H. R., Rode, J.: Axoplasmic alterations in the proximal and distal stumps of transsected nerves. Acta neuropath. (Berl.) 7, 44–61 (1966).

    Google Scholar 

  • Bodian, D.: Nucleic acid in nerve cell regeneration. Symp. Soc. exp. Biol. 1, 163–173 (1947).

    Google Scholar 

  • Botár, J.: The autonomic nervous system, p. 183–238. Budapest: Akadémiai Kiadó 1966.

    Google Scholar 

  • Burdman, J. A.: Uptake of 3H catecholamines by chick embryo sympathetic ganglia in tissue culture. J. Neurochem. 15, 1321–1323 (1968).

    Google Scholar 

  • Burnstock, G.: Structure of smooth muscle and its innervation. In: Smooth muscle, eds. Bülbring, E., Brading, A., Jones, A., and Tomita, T., p. 1–69. London: Edward Arnold. Ltd. 1970.

    Google Scholar 

  • Burnstock, G.: Neural nomenclature. Nature (Lond.) 229, 282–283 (1971).

    Google Scholar 

  • Burnstock, G., Gannon, B., Iwayama, T.: Sympathetic innervation of vascular smooth muscle in normal and hypertensive animals. Suppl. to Circulat. Res. 26, 27, 11-15 to 11-23 (1970).

    Google Scholar 

  • Burnstock, G., Iwayama, T.: Fine structural identification of autonomic nerves and their relation to smooth muscle. In: Progress in brain research. Symposium on Histochemistry of Nervous Transmission, ed. Eränkö, O., vol. 34, p. 389–404. Amsterdam: Elsevier Publ. Co. 1971.

    Google Scholar 

  • Cajal Ramón, Y. S.: Notas preventivas sobre el gran simpático y retina de los mamiferos. Graceto Sanitaria de Barcelona 10 déc (1891).

  • Cajal Ramón, Y. S.: Histologie du système nerveux de l'homme et des vertébrés. Paris: A. Maloine 1911.

    Google Scholar 

  • Castro, F. de: Sympathetic ganglia, normal and pathological. In: Cytology and cellular pathology of the nervous system, ed. Penfield, W., p. 317–379. New York: Hoeber, P.B. 1932.

    Google Scholar 

  • Cauna, N., Ross, L. L.: The fine structure of Meissner's touch corpuscles of human fingers. J. biophys. biochem. Cytol. 8, 467–482 (1960).

    Google Scholar 

  • Chamley, J. H., Mark, G. E., Burnstock, G.: Sympathetic ganglia in culture. II. Accessory cells. Z. Zellforsch. 135, 315–327 (1972).

    Google Scholar 

  • Cohen, A. I., Nicol, E. C., Richter, W.: Nerve growth factor requirement for development of dissociated embryonic sensory and sympathetic ganglia in culture. Proc. Soc. exp. Biol. (N.Y.) 116, 784–789 (1964).

    Google Scholar 

  • Crain, S. M., Benitez, H. H., Vatter, A. E.: Some cytological effects of salivary nerve growth factor on tissue cultures of peripheral ganglia. Ann. N.Y. Acad. Sci. 118, 206–231 (1964).

    Google Scholar 

  • Dale, H. H., Feldberg, W.: The chemical transmission of secretory impulses to the sweat glands of the cat. J. Physiol. (Lond.) 82, 121–128 (1934).

    Google Scholar 

  • Dennison, M. E.: Electron stereoscopy as a means of classifying synaptic vesicles. J. Cell Sci. 8, 529–539 (1971).

    Google Scholar 

  • Ehrmann, R. L., Gey, G. O.: The growth of cells on a transparent gel of reconstituted rattail collagen. J. nat. Cancer Inst. 16, 1375–1404 (1956).

    Google Scholar 

  • England, J. M., Goldstein, M. M.: The uptake and localisation of catecholamines in chick embryo sympathetic neurons in tissue culture. J. Cell. Sci. 4, 677–691 (1969).

    Google Scholar 

  • Eränkö, O., Härkönen, M.: Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat. Acta physiol. scand. 58, 285–286 (1963).

    Google Scholar 

  • Estable, C., Acosta-Ferreira, W., Sotelo, J. R.: An electron-microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • Falck. B.: Observations on the possibilities of the cellular localisation of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197 (1962).

    Google Scholar 

  • Flexner, L. B.: The cytological, biochemical and physiological differentiation of the neuroblast. In: Genetic neurology, ed. Weiss, P. Chicago: Chicago University Press 1950.

    Google Scholar 

  • Furness, J. B., Campbell, G. R., Gillard, S. M., Malmfors, T., Cobb, J. L. S., Burnstock, G.: Cellular studies of sympathetic denervation produced by 6-hydroxydopamine in the vas deferens. J. Pharmacol. exp. Ther. 174, 111–122 (1970).

    Google Scholar 

  • Geffen, L. D., Livett, B. G.: Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51, 98–157 (1971).

    Google Scholar 

  • Goldstein, M. N.: Incorporation and release of H3-catecholamines by cultured fetal human sympathetic nerve cells and neuroblastoma cells. Proc. Soc. exp. Biol. (N.Y.) 125, 993–996 (1967).

    Google Scholar 

  • Grainger, F., James, D. W., Tresman, R. L.: An electron-microscopic study of the early outgrowth from chick spinal cord in vitro. Z. Zellforsch. 90, 53–67 (1968).

    Google Scholar 

  • Hank, J. H., Wallace, R. E.: Relation of oxygen and temperature in the preservation of tissues by refrigeration. Proc. Soc. exp. Biol. (N.Y.) 71, 196–200 (1949).

    Google Scholar 

  • Hauschka, S. D., Konigsberg, I. R.: The influence of collagen on the development of muscle clones. Proc. nat. Acad. Sci. (Wash.) 55, 119–126 (1966).

    Google Scholar 

  • Hermetet, J. C., Treska, J., Mandel, P.: Histochemical study of isolated neurons in culture from chick embryo sympathetic ganglia. Histochemie 22, 177–186 (1970).

    Google Scholar 

  • Hökfelt, T.: Electron microscopic observations on nerve terminals in the intrinsic muscles of the albino rat iris. Acta physiol. scand. 67, 255–256 (1966).

    Google Scholar 

  • Hollinshead, W. H., Clark, S. L.: The Nissl granules of autonomic neurons. J. comp. Neurol. 62, 155–170 (1935).

    Google Scholar 

  • Howe, H. A., Bodian, D.: Refractoriness of nerve cells to poliomyelitis virus after interruption of the axons. Johns Hopk. Hosp. Bull. 69, 92–133 (1941).

    Google Scholar 

  • Ingersoll, E. H.: Differential counts of sympathetic ganglion cells in the rat and rabbit. Anat. Rec. 55, 21–22 (1933).

    Google Scholar 

  • Ingersoll, E. H.: The effect of stimulation upon the coeliac ganglion cells of the albino rat. J. comp. Neurol. 59, 267–284 (1934).

    Google Scholar 

  • Iraldi, A. P., de Robertis, E.: The neurotubular system of the axon and the origin of granulated and non-granulated vesicles in regenerating nerves. Z. Zellforsch. 87, 330–344 (1968).

    Google Scholar 

  • Iwayama, T., Furness, J. B.: Enhancement of the granulation of adrenergic storage vesicles in drug-free solution. J. Cell Biol. 48, 699–703 (1971).

    Google Scholar 

  • Jacobowitz, D.: Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed. Proc. 29, 1929–1944 (1970).

    Google Scholar 

  • Kapeller, K., Mayor, D.: An electron microscopic study of the early changes proximal to a constriction in sympathetic nerves. Proc. roy. Soc. B 172, 39–51 (1969).

    Google Scholar 

  • Lampert, P. W.: A comparative electron microscope study of reactive, degenerating, regenerating and dystrophic axons. J. Neuropath. exp. Neurol. 26, 345 (1967).

    Google Scholar 

  • Lentz, T. L.: Fine structure of nerves in the regenerating limb of the newt Triturus. Amer. J. Anat. 121, 647–670 (1967).

    Google Scholar 

  • Levi-Montalcini, R., Angeletti, P. U.: Biological properties of a nerve-growth promoting protein and its antiserum. In: Regional neurochemistry. Proceedings 4th International Neurochemical Symposium, eds. Kety, S. and Elkes, J. 362–377 (1961).

  • Levi-Montalcini, R., Angeletti, P. U.: Essential role of the Nerve Growth Factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Develop. Biol. 7, 653–659 (1963).

    Google Scholar 

  • Levi-Montalcini, R., Angeletti, P. U.: Biological aspects of the nerve growth factor. In: Growth of the nervous system. A Ciba Foundation Symposium. eds, Wolstenholme, G. E. W. and O'Connor, M., p. 126–147. London: J. & A. Churchill Ltd. 1968.

    Google Scholar 

  • Levi-Montalcini, R., Booker, B.: Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc. nat. Acad. Sci. (Wash.) 42, 373–384 (1960).

    Google Scholar 

  • Marinesco, G.: Recherches sur l'histologie fine des cellules du système sympathique. Rev. neurol. 6, 230–235 (1898).

    Google Scholar 

  • Masurovsky, E. B., Benitez, H. H.: Apparent innervation of chick cardiac muscle by sympathetic neurons in organized culture. Anat. Rec. 157, 285 (1967).

    Google Scholar 

  • Masurovsky, E. B., Benitez, H. H., Kim, S. U., Murray, M. R.: Origin, development and nature of intranuclear rodlets in chicken sympathetic neurons. J. Cell Biol. 44, 172–191 (1970).

    Google Scholar 

  • Masurovsky, E. B., Benitez, H. H., Murray, M. R.: Ultrastructural studies of sympathetic neurons and supporting cells cultured in deuterium oxide versus nerve-growth factor. J. Cell Biol. 31, 73A (1966).

    Google Scholar 

  • Matthews, M. R., Raisman, G.: The ultrastructural and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat. (Lond.) 105, 255–282 (1969).

    Google Scholar 

  • McKenna, O. C., Rosenbluth, J.: Characterization of an unusual catecholamine-containing cell type in the toad hypothalamus. J. Cell Biol. 48, 650–672 (1971).

    Google Scholar 

  • Merrillees, N. C. R.: The fine structure of muscle spindles in the lumbrical muscles of the rat. J. biophys. biochem. Cytol. 7, 725–742 (1960).

    Google Scholar 

  • Merrillees, N. C. R.: The nervous environment of individual smooth muscle cells of the guineapig vas deferens. J. Cell Biol. 37, 794–817 (1968).

    Google Scholar 

  • Murray, M. R.: Nervous tissues in vitro. In: Cells and tissues in culture. Methods, biology and physiology, ed. Willmer, E. N., vol. 2, p. 373–455. London-New York: Academic Press 1965.

    Google Scholar 

  • Murray, M. R., Benitez, H. H.: Deuterium oxide: direct action on sympathetic ganglia isolated in culture. Science 155, 1021–1024 (1967).

    Google Scholar 

  • Murray, M. R., Benitez, H. H.: Action of heavy water (D2O) on growth and development of isolated nervous tissues. In: Growth of the nervous system. A Ciba Foundation Symposium, eds. Wolstenholme, G. E. W., and O'Connor, M., p. 148–178. London: J. & A. Churchill Ltd. 1968.

    Google Scholar 

  • Murray, M. R., Stout, A. P.: Adult human ganglion cells cultivated in vitro. Amer. J. Anat. 80 225–273 (1947).

    Google Scholar 

  • Nakai, J.: Dissociated dorsal root ganglia in tissue culture. Amer. J. Anat. 99, 81–130 (1956).

    Google Scholar 

  • Nakai, J., Okamoto, M.: Identification of neuroglial cells in tissue culture. In: Morphology of neuroglia, ed. Nakai, J., p. 65–102. Tokyo Japan: Igaku Shoin Ltd. Springfield, Illinois, U.S.A.: Charles C. Thomas 1963.

    Google Scholar 

  • Norberg, K. A., Hamberger, B.: The sympathetic adrenergic neuron. Acta physiol. scand. 63, Suppl. 238, 5–36 (1964).

    Google Scholar 

  • Norberg, K. A., Ritzén, M., Ungerstedt, U.: Histochemical studies on a special catecholamine containing cell type in sympathetic ganglia. Acta physiol. scand. 67, 260–270 (1966).

    Google Scholar 

  • Pease, D. C., Quilliam, T. A.: Electron microscopy of the Pacinian corpuscle. J. biophys. biochem. Cytol. 3, 331–342 (1957).

    Google Scholar 

  • Pick, J.: The autonomic nervous system. Morphological, comparative, clinical and surgical aspects. Philadelphia-Toronto: J. B. Lippincott Co. 1970.

    Google Scholar 

  • Ping, C.: On the growth of the largest nerve cells in the superior cervical sympathetic ganglion of the albino rat—from birth to maturity. J. comp. Neurol. 33, 281–312 (1921).

    Google Scholar 

  • Pomerat, C. M.: Cinematography, indispensible tool for cytology. In: International review of cytology, eds. Bourne, G. H. and Danielli, J. F., vol. 11, p. 307–339. New York-London: Acad. Press (1961).

    Google Scholar 

  • Richardson, K. C.: Electron microscopic identification of autonomic nerve endings. Nature (Lond.) 210, 756 (1966).

    Google Scholar 

  • Robinson, P. M., McLean, J. R. M., Burnstock, G.: Ultrastructural identification of non-adrenergic inhibitory nerve fibers. J. Pharmacol. exp. Therap. 179, 149–160 (1971).

    Google Scholar 

  • Rose, G.: A separable and multipurpose tissue culture chamber. Tex. Rep. Biol. Med. 12, 1074–1083 (1954).

    Google Scholar 

  • Rose, G. G., Pomerat, C. M., Shindler, T. O., Trunnell, J. B. A.: A cellophane-strip technique for culturing tissue in multipurpose culture chambers. J. biophys. biochem. Cytol. 4, 761–764 (1958).

    Google Scholar 

  • Salk, J. E., Youngner, J. S., Ward, E. N.: Use of color change of phenol red as the indicator in titrating poliomyelitis virus or its antibody in a tissue culture system. Appendix. Method of preparing medium 199. Amer. J. Hyg. 60, 214–230 (1954).

    Google Scholar 

  • Sano, J., Odake, G., Yonezawa, T.: Fluorescence microscopic observations of catecholamines in cultures of the sympathetic chain. Z. Zellforsch. 80, 345–352 (1967).

    Google Scholar 

  • Shimada, Y., Fischman, D. A., Moscona, A. A.: The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J. Cell Biol. 35, 445–453 (1967).

    Google Scholar 

  • Smith, T. E., Jr., Berndt, W. O.: The establishment of beating myocardial cells in long-term culture in fluid medium. Exp. Cell Res. 36, 179–191 (1964).

    Google Scholar 

  • Szantroch, Z.: Beobachtung an den Kulturen des Sympathikus. Ergebnisse der Züchtung des Remarkschen Darmnerven. Arch. exp. Zellforsch. 14, 442–452 (1933).

    Google Scholar 

  • Terzakis, J. A.: Uranyl acetate, a stain and a fixative. J. Ultrastruct. Res. 22, 168–184 (1968).

    Google Scholar 

  • Uchizono, K.: Morphological background of excitation and inhibition at synapses. J. Electron Microscopy 17, 55–66 (1968).

    Google Scholar 

  • Uehara, Y., Burnstock, G.: Fine structure of guinea-pig ureter. In preparation (1971).

  • Vail, M. M. III La: A method of embedding selected areas of tissue cultures for E. M. Tex. Rep. Biol. Med. 26, 215–221 (1968).

    Google Scholar 

  • Vandervael, F.: Contributions to the study of sympathetic nervous tissue cultivated in vitro. Arch. Biol. (Liège) 56, 383–393 (1945).

    Google Scholar 

  • Venable, J. M., Coggeshall, R.: A simplified lead citrate stain for use in electronmicroscopy. J. Cell Biol. 25, 407–408 (1965).

    Google Scholar 

  • Watanabe, H.: Adrenergic nerve elements in the hypogastric ganglion of the guinea-pig. Amer. J. Anat. 130, 305–330 (1971).

    Google Scholar 

  • Watson, W. E.: Some quantitative observations upon the oxidation of substrates of the tricarboxylic acid cycle in injured neurons. J. Neurochem. 13, 849–856 (1966).

    Google Scholar 

  • Watson, W. E.: Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J. Physiol. (Lond.) 196, 655–676 (1968).

    Google Scholar 

  • Wettstein, R., Sotelo, J. R.: Electron microscope study on the regeneration process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).

    Google Scholar 

  • Yamada, K. M., Spooner, B. S., Wessells, N. K.: Axon growth: roles of microfilaments and microtubules. Proc. nat. Acad. Sci. (Wash.) 66, 1206–1212 (1970).

    Google Scholar 

  • Zaimis, E.: Nerve growth factor (NGF) and multipotential cells. Proc. Physiol. Soc. C 15, 16–17 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Heart Foundation of Australia and the Australian Research Grants Committee. We are particularly grateful to Janet McConnell for her excellent technical assistance and to Dr. Peter Robinson for his critisicm of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamley, J.H., Mark, G.E., Campbell, G.R. et al. Sympathetic ganglia in culture. Z.Zellforsch 135, 287–314 (1972). https://doi.org/10.1007/BF00307178

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307178

Key words

Navigation