Skip to main content
Log in

Rectal ultrastructure in salt- and freshwater mosquito larvae in relation to physiological state

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

A comparison of rectal morphology and ultrastructure is made between a freshwater (A. aegypti) and salt water (A. campestris) species of mosquito larvae, and between A. campestris larvae producing hyper- and hyposmotic urine.

The epithelium of A. aegypti contains one cell type characterized by infolding of both the apical and basal membranes, straight lateral borders, and evenly distributed mitochondria.

The rectum of A. campestris contains distinct anterior and posterior regions, each made up of a single cell type. These two regions can be distinguished on the basis of cell thickness, depth of apical infolding and distribution of mitochondria. The anterior region is similar to the rectum of A. aegypti, while the posterior region is considered unique to the salt-water species and hence probably is associated with the formation of hyperosmotic urine.

In A. campestris, the apical (rather than lateral or basal) membranes are probably the site of hyperosmotic urine production. Two possible mechanisms for this process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asakura, K.: Studies on the structural basis for ion- and water-transport by the osmoregulatory organs of mosquitoes. I. Fine structure of the rectal epithelium of Aedes albopictus larva. Sci. Rep. Kanazawa Univ. 1, 37–55 (1970).

    Google Scholar 

  • Beadle, L. C.: Regulation of the hemolymph in the saline water mosquito larvae Aedes detritus Edw. J. exp. Biol. 16, 346–362 (1939).

    Google Scholar 

  • Berridge, M. J., Gupta, B. L.: Fine structural changes in relation to ion and water transport in the rectal papillae of the blowfly Calliphora. J. Cell Sci. 2, 89–112 (1967).

    Google Scholar 

  • Copeland, E.: A mitochondrial pump in the cells of the anal papillae of mosquito larvae. J. Cell Biol. 23, 253–264 (1964).

    Google Scholar 

  • Gomori, G.: Observations with differential stains on human islets of Langerhans. Amer. J. Path. 17, 395–406 (1941).

    Google Scholar 

  • Goodchild, A. J. P.: The rectal glands of Halosalada lateralis (Fallén) (Hemiptera: Saldidae) and Hydrometra stagnorum (L.) (Hemiptera: Hydrometridae). Proc. roy. ent. Soc. Lond. (A) 44, 62–70 (1969).

    Google Scholar 

  • Grimstone, A. V., Mullinger, A. M., Ramsay, J. A.: Further studies on the rectal complex of the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Phil. Trans. B 253, 342–382 (1968).

    Google Scholar 

  • Gupta, B. L., Berridge, M. J.: Fine structural organization of the rectum in the blowfly, Calliphora erythrocephala (Meig.) with special reference to connective tissue, tracheae, and neurosecretory innervation in the rectal papillae. J. Morph. 120, 23–82 (1966a).

    Google Scholar 

  • Gupta, B. L., Berridge, M. J.: A coat of repeating subunits on the cytoplasmic surface of the plasma membrane in the rectal papillae of the blowfly, Calliphora erythrocephala (Meig.), studied in situ by electron microscopy. J. Cell Biol. 29, 376–382 (1966b).

    Google Scholar 

  • Hopkins, C. R.: The fine-structural changes observed in the rectal papillae of the mosquito Aedes aegypti L. and their relation to epithelial transport of water and inorganic ions. J. roy. micr. Soc. 86, 235–252 (1967).

    Google Scholar 

  • Jarial, M. S., Scudder, G. G. E.: The morphology and ultrastructure of the Malpighian tubules and hindgut in Cenocorixa bifida (Hung.) (Hemiptera, Corixidae). Z. Morph. Ökol. Tiere 68, 269–299 (1970).

    Google Scholar 

  • Maddrell, S. H. P.: The mechanisms of insect excretory systems. Advanc. Insect Physiol. 8, 199–331 (1971).

    Google Scholar 

  • Noble-Nesbitt, J.: Water balance in the firebrat Thermobia domestica (Packard). Exchanges of water from the atmosphere. J. exp. Biol. 50, 745–769 (1969).

    Google Scholar 

  • Noble-Nesbitt, J.: Water balance in the firebrat Thermobia domestica (Packard). The site of uptake of water from the atmosphere. J. exp. Biol. 52, 193–200 (1970).

    Google Scholar 

  • Noirot, C., Noirot-Timothée, C.: Revêtement de la membrane cytoplasmique et absorption des ions dans les papilles rectales d'un Termite (Insecta, Isoptera). C. R. Acad. Sci. (Paris) 263, 1099–1102 (1966).

    Google Scholar 

  • Noirot, C., Noirot-Timothée, C.: L'epithélium absorbant de la panse d'un termite supérieur. Ultrastructures et rapport avec la symbiose bactérienne. Ann. Soc. ent. Fr. 3, 577–592 (1967).

    Google Scholar 

  • Noirot, C., Noirot-Timothée, C.: Ultrastructure du proctodeum chez Thysanoure Lepismodes inquilinus Newman (= Thermobia domestica Packard). II Le sac anal. J. Ultrastruct. Res. 37, 335–350 (1971).

    Google Scholar 

  • Oschman, J. L., Wall, B. J.: The structure of the rectal pads of Periplaneta americana L. with regard to fluid transport. J. Morph. 127, 475–510 (1969).

    Google Scholar 

  • Pease, D. C.: Histological techniques for electron microscopy, sec. ed. New York-London: Academic Press 1964.

    Google Scholar 

  • Phillips, J. E.: Apparent transport of water by insect excretory systems. Amer. Zool. 10, 413–436 (1970).

    Google Scholar 

  • Phillips, J. E., Meredith, J.: Active sodium and chloride transport by anal papillae of a salt water mosquito larvae (Aedes campestris). Nature (Lond.) 222, 168–169 (1969).

    Google Scholar 

  • Prosser, C. L., Brown, F. A.: Comparative animal physiology. Philadelphia-London 1950.

  • Ramsay, J. A.: Osmotic regulation in mosquito larvae. J. exp. Biol. 27, 145–157 (1950).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Sabatini, D. D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Schmidt-Nielsen, B.: Introduction to comparative aspects of transport of hypertonic, isotonic, and hypotonic solutions by epithelial membranes: Physiology Society Symposium. Fed. Proc. 30, 3–5 (1971).

    Google Scholar 

  • Shaw, J., Stobbart, R. H.: Osmotic and ionic regulation in insects. Advanc. Insect Physiol. 1, 315–399 (1963).

    Google Scholar 

  • Stobbart, R. H., Shaw, J.: Salt and water balance: excretion. In: Rockstein, M. (ed.), The physiology of insecta, vol. 3, p. 189–258. New York-London: Academic Press 1964.

    Google Scholar 

  • Wall, B. J.: Local osmotic gradients in the rectal pads of an insect. Fed. Proc. 30, 42–48 (1971).

    Google Scholar 

  • Wessing, A.: Funktionsmorphologie von Exkretionsorganen bei Insekten. Zool. Anz., Suppl. 31, 633–681 (1967).

  • Witkus, E. R., Grillo, R. S., Smith, W. J.: Microtubules of the hindgut epithelium in the woodlouse, Oniscus ascellus. Proc. E.M. Soc. Amer. 27, 312–313 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by operating grants from the National Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meredith, J., Phillips, J.E. Rectal ultrastructure in salt- and freshwater mosquito larvae in relation to physiological state. Z.Zellforsch 138, 1–22 (1973). https://doi.org/10.1007/BF00307074

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307074

Key words

Navigation