Skip to main content
Log in

Histochemical studies on the morphology of the golgi apparatus and its relationship to catecholamine biosynthesis in the locus coeruleus of the rat

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Detailed histochemical studies have been performed on the morphology of the Golgi apparatus (GA) by application of the thiamine pyrophosphatase (TPPase) method (Novikoff and Goldfischer, 1961) to the neurons of the locus coeruleus (LC) of normal and catecholamine biosynthesis inhibitors (fusaric acid and D, L-α-methyl-p-tyrosine methylester HCl) given adult healthy male Wistar strain rats. The neurons were classified into five categories on the basis of the morphology of the Golgi apparatus. The number of cells in individual categories was counted to evaluate the percentage of each category in the whole nucleus.

The majority of cells belongs to Types II, III, and IV whose GA goes through cyclic activity, but the remaining neurons belong to Types I and V which may have a strong tendency to be different from the former in character. The latter neurons correspond formally with Types I and V of the rabbit LC, but they do not respond to the drugs administered. The rat LC is very similar to the dorsal vagal nucleus of the rabbit in regard to the dominant category. The present results indicate that the majority of the rat LC neurons may work vigorously and they may be motor neurons.

Administration of the drugs caused reduction of TPPase activity, augmentation of disintegration and the budding-off process of the GA of Type IV, a decrease in the percentage of Type IV and an increase in that of Type II. Administration of 100 mg/kg fusaric acid caused maximal morphological change of the GA at the 90th minute; however, administration of 200 mg/kg fusaric acid showed more marked change of the GA, having two peaks and two valleys. The GA revealed much more intense reaction to D,L-α-methyl-p-tyrosine methylester HCl than to fusaric acid. The present results indicate that tyrosine hydroxylase may be the rate-limiting enzyme in the catecholamine biosynthesis.

These noticeable changes of GA caused by administration of the drugs were completely restricted to the neurons of LC and the neurons of the mesencephalic nucleus of the trigeminal nerve did not show any morphological changes of the GA. These results strongly suggest that the GA of the rat LC neurons may have ability to synthesize catecholamine whereas the GA of the rat mesencephalic nucleus of the trigeminal nerve may be completely devoid of this ability and that the role of the GA may be different depending on the anatomical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andén, N-E., Corrodi, H., Fuxe, K., Ungerstedt, U.: Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Europ. J. Pharmacol. 15, 139–199 (1971).

    Google Scholar 

  • Bak, I. J.: The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines. Exp. Brain Res. 3, 40–57 (1967).

    Google Scholar 

  • Baxter, D. W., Olszewski, J.: Respiratory responses evoked by electrical stimulation of pons and mesencephalon. J. Neurophysiol. 18, 276–287 (1955).

    Google Scholar 

  • Bresse, G. R., Traylor, T. D.: Developmental characteristic of brain catecholamines and tyrosine hydroxylase in the rat; effects of 6-hydroxydopamine. Brit. J. Pharmacol. 44, 210–222 (1972).

    Google Scholar 

  • Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959).

    Google Scholar 

  • Corrodi, H., Hanson, L. C. F.: Central effects of an inhibitor of tyrosine hydroxylation. Psychopharmacologia (Berl.) 10, 116–125 (1966).

    Google Scholar 

  • Cramer, W., Ludford, R. J.: On cellular activity and cellular structure as studied in the thyroid gland. J. Physiol. (Lond.) 61, 398–408 (1926).

    Google Scholar 

  • Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine containing neurons in the central nervous system. Acta physiol. Scand. 62, Suppl. 232 (1964).

    Google Scholar 

  • Dahlström, A., Fuxe, K.: Localization of monoamines in the lower brain stem. Experientia (Basel) 20, 398–399 (1964).

    Google Scholar 

  • Dahlström, A., Fuxe, K., Hillarp, N-A.: Site of action of reserpine. Acta pharmacol. (Kbh.) 22, 272–292 (1965).

    Google Scholar 

  • Descarries, L.: Intraneural distribution of norepinephrine 3H in the central nervous system of the rat: High resolution radioautographic study. Excerpta med. (Amst.) 166, 46–57 (1968).

    Google Scholar 

  • Descarries, L., Droz, B.: Intraneural distribution of exogenous norepinephrine in the central nervous system of rat. J. Cell, Biol. 44, 385–399 (1970).

    Google Scholar 

  • Friede, R. L.: Topographic brain chemistry, p. 74. New York—London: Academic Press 1966.

    Google Scholar 

  • Friede, R. L., Fleming, L. M., Knoller, M. A.: A comparative mapping of enzymes involved in hexosemonophosphate shunt and citric acid cycle in the brain. J. Neurochem. 10, 263–277 (1963).

    Google Scholar 

  • Fuxe, K., Hökfelt, T., Nilsson, O.: A fluorescence and electroscopic study on certain brain regions rich in monoamine terminals. Amer. J. Anat. 117, 33–46 (1965).

    Google Scholar 

  • Fuxe, K., Hökfelt, T., Nilsson, O., Reinius, S.: Fluorescence and electron microscopic study on central monoamine nerve cells. Anat. Rec. 155, 33–40 (1966).

    Google Scholar 

  • Hidaka, H.: Fusaric acid, an inhibitor of dopamine-β-hydroxylase affects serotonin and noradrenaline. Nature (Lond.) 231, 54–55 (1971).

    Google Scholar 

  • Hillarp, N. A.: Cell reactions in the hypothalamus following overloading of the antidiuretic function. Acta endocr. (Kbh.) 2, 33–43 (1949).

    Google Scholar 

  • Hökfelt, T.: Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat. Acta physiol. scand. 76, 427–435 (1969).

    Google Scholar 

  • Iijima, K.: Histochemical studies on the morphology of the Golgi apparatus and on the relationship between the Golgi apparatus and lysosomes in the cellular elements of the rabbit area postrema with the thiamine pyrophosphatase and acid phosphatase methods. Acta histochem. (Jena) 33, 101–118 (1969a).

    Google Scholar 

  • Iijima, K.: Histochemical studies on the morphology of the Golgi apparatus and on the distribution of hexokinase, phosphoglucomutase and some dehydrogenases in the dorsal vagal and hypoglossal nuclei of the rabbit. Histochemie 18, 132–149 (1969b).

    Google Scholar 

  • Iijima, K.: Histochemical studies on the morphology of the Golgi apparatus in the neurons of supraoptic and paraventricular nuclei of the normal and dehydrated rabbit (application of the thiamine pyrophosphatase method). Z. Zellforsch. 103, 460–474 (1970).

    Google Scholar 

  • Iijima, K.: Histochemical studies on the morphology of the Golgi apparatus and on the distribution of hexokinase, L-gulonolactone oxidase, xylulose reductases and ascorbic acid in the locus coeruleus of the rabbit. Histochemie 25, 101–122 (1971).

    Google Scholar 

  • Iijima, K., Awazi, N.: Histochemical studies on the morphology of the Golgi apparatus and on the distribution of hexokinase and some enzymes concerning vitamin C synthesis in the substantia nigra of the rabbit. Acta histochem. (Jena) 44, 122–136 (1972).

    Google Scholar 

  • Johnson, F. H., Russel, V.: The locus coeruleus as a pneumotaxic center. Anat. Rec. 112, 348 (1952).

    Google Scholar 

  • Jongkind, J. F., Swaab, D. F.: The distribution of thiamine diphosphatephosphohydrolase in the neurosecretory nuclei of the rat following osmotic stress. Histochemie 11, 319–324 (1967).

    Google Scholar 

  • Kirshner, N.: Uptake of catecholamines by a particulate fraction of adrenal medulla. J. biol. Chem. 37, 2311–2317 (1962).

    Google Scholar 

  • Lenn, N. J.: Electron microscopic observation on monoamine containing brain stem neurons in normal and drug-treated rats. Anat. Rec. 153, 399–406 (1965).

    Google Scholar 

  • Loizou, L. A.: Effect of inhibition of catecholamine synthesis on central catecholamine-containing neurons in the developing albino rat. Brit. J. Pharmacol. 41, 41–48 (1971).

    Google Scholar 

  • Lovenberg, W., Weissbach, H., Udenfriend, S.: Aromatic L-amino acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).

    Google Scholar 

  • Lumsden, T.: Observations on the respiratory centres in the cat. J. Physiol. (Lond.) 57, 153–160 (1922/23).

    Google Scholar 

  • Maeda, T., Abe, T., Shimizu, N.: Histochemical demonstration of aromatic monoamine in the locus coeruleus of the mammalian brain. Nature (Lond.) 188, 326–327 (1960).

    Google Scholar 

  • Maeda, T., Dresse, A.: Recherches sur le développement du locus coeruleus. 1. Etude des catécholamines au microscope de fluorescence. Acta neurol. belg. 69, 5–19 (1969).

    Google Scholar 

  • Maeda, T., Dresse, A., Duckens, P. Y., Gerebtzoff, M. A.: Histochemical development of locus coeruleus and related structures in the rat with special reference to catecholamines, monoamine oxidase, cholinesterase, acid phosphatase and glucose-6-phosphate dehydrogenase. Personal communication (1969).

  • Nagatsu, T., Hidaka, H., Kuzuya, H., Takeya, K., Umezawa, H., Takeuchi, T., Suda, H.: Inhibition of dopamine-β-hydroxylase by fusaric acid (5-butyl picolinic acid) in vitro and in vivo. Biochem. Pharmacol. 19, 35–44 (1970).

    Google Scholar 

  • Nagatsu, T., Levitt, M., Udenfriend, S.: Tyrosine hydroxylase the initial step in norepinephrine biosynthesis. J. biol. Chem. 239, 2910–2917 (1964).

    Google Scholar 

  • Nagi, S. H., Wang, S. C.: Organization of central respiratory mechanisms in the brain stem of the cat: localization by stimulation and destruction. Amer. J. Physiol. 190, 343–349 (1957).

    Google Scholar 

  • Novikoff, A. B., Goldfischer, S.: Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies. Proc. nat. Acad. Sci. (Wash.) 47, 802–810 (1961).

    Google Scholar 

  • Onn-leng, C., Webster, R. A.: Effect of tetrabenazine and α-methyl-m-tyrosine on exploratory activity and brain catecholamines in rats. Brit. J. Pharmacol. 41, 691–699 (1971).

    Google Scholar 

  • Parizek, J., Hassler, R., Bak, I. J.: Light and electron microscopic autoradiography of substantia nigra of rat after intraventricular administration of tritium labeled norepinephrine, dopamine, serotonin and the precursors. Z. Zellforsch. 115, 137–148 (1971).

    Google Scholar 

  • Ross, S. B., Weinshilboun, R., Molinoff, B. P., Vesell, E. S., Axelrod, J.: Electrophoretic properties of dopamine-β-hydroxylase in several tissue from three species. Molec. Pharmacol. 8, 50–58 (1972).

    Google Scholar 

  • Schütte, B.: Enzymhistochemische Untersuchungen am Subfornical — und am Subcomissuralorgan sowie an der Area postrema der Wistarratte. Acta histochem. (Jena) 41, 210–228 (1971).

    Google Scholar 

  • Shantha, T. R., Bourne, G. H.: The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons. V. Studies on sympathetic ganglion cells. Cytologia (Tokyo) 31, 132–143 (1966a).

    Google Scholar 

  • Shantha, T. R., Bourne, G. H.: The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons. VI. Studies on the spinal cord, hippocampus, and trigeminal ganglion. Ann. Histochim. 11, 337–351 (1966b).

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: Histochemical demonstration of thiamine pyrophosphatase and acid phosphatase in the Golgi region of the cells of the eye. J. Anat. (Lond.) 99, 103–117 (1965a).

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons. 1. Studies on ganglion cells. Acta histochem. (Jena) 22, 155–178 (1965b).

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons. II. Studies on the cerebral cortex. Cellule 65, 201–223 (1965c).

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons. III. Studies on the olfactory bulb. Exp. Cell Res. 40, 292–300 (1965d).

    Google Scholar 

  • Shanthaveerappa, T. R., Bourne, G. H.: The thiamine pyrophosphotase technique as an indicator of the morphology of the Golgi apparatus in the neurons. IV. Studies on cerebellum of rat and squirrel monkey. Z. Zellforsch. 68, 699–710 (1965e).

    Google Scholar 

  • Shimizu, N., Morikawa, M., Okada, M.: Histochemical studies of monoamine oxidase of the brain of rodents. Z. Zellforsch. 49, 389–400 (1959).

    Google Scholar 

  • Sotelo, L.: The fine structural localization of norepinepherine 3H in the substantia nigra and area postrema of the rat an autoradiographic study. J. Ultrastruct. Res. 36, 824–841 (1971).

    Google Scholar 

  • Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyltyrosine an inhibitor of tyrosine hydroxylase. J. Pharmacol. exp. Ther. 147, 86–95 (1965).

    Google Scholar 

  • Tamiya, M.: Neurosecretory system in experimental condition. IV. Cytological findings on the hypothalamic neurosecretory cells of the experimentally dehydrated dog. Arch. histol. jap. 13, 345–354 (1957).

    Google Scholar 

  • Udenfriend, S., Creveling, C. R.: Localization of dopamine-β-oxidase in brain. J. Neurochem. 4, 350–352 (1959).

    Google Scholar 

  • Udenfriend, S., Zaltzman, P., Cordon, R., Spector, S.: Evaluation of the biochemical effects produced in vivo by inhibitiors of the three enzymes involved in norepinephrine biosynthesis. Molec. Pharmacol. 2, 95–105 (1966).

    Google Scholar 

  • Viveros, O. H., Arqueros, L., Connett, R. J., Kirshner, N.: Mechanism of secretion from the adrenal medulla. Molec. Pharmacol. 5, 69–86 (1969).

    Google Scholar 

  • Viveros, O. H., Arqueros, L., Kirshner, N.: Mechanism of secretion from the adrenal medulla. Molec. Pharmacol. 7, 444–454 (1971).

    Google Scholar 

  • Weinshlboum, R. M., Thoa, N. B., Johnson, D. G., Kopin, I. J., Axelrod, J.: Proportional release of norepinephrine and dopamine-β-hydroxylase from sympathetic nerve. Science 174, 1349–1351 (1971).

    Google Scholar 

  • Whitby, L. H., Axelrod, J., Weil-Malherbe, H.: The fate of norepinephrine in animals. J. Pharmacol. exp. Ther. 132, 193–201 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iijima, K., Awazi, N. Histochemical studies on the morphology of the golgi apparatus and its relationship to catecholamine biosynthesis in the locus coeruleus of the rat. Z.Zellforsch 136, 329–348 (1973). https://doi.org/10.1007/BF00307038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307038

Key words

Navigation