Skip to main content
Log in

Labyrinth cells, a new cell type in vertebrate olfactory organs

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Light microscopy and transverse electron microscopy has been employed to study the olfactory organs in 82 specimens of freshwater adapted young and homing adult Baltic sea trout Salmo trutta trutta L. In both sensory and indifferent epithelium the olfactory mucosa has scattered cells of a type that has not been described in any olfactory organ before. They are called labyrinth cells and are characterized by an extensive, turtuous, interconnected tubular system of smooth endoplasmatic reticulum intimately connected with numerous mitochondria. This cell type is similar to chloride and other cells which probably are involved in electrolyte transport in fish gills and pseudobranch, the rectal gland in elasmobranchs and the nasal gland in reptiles and birds. It is suggested that the olfactory organ in fish is serially homologous with the pseudobranch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bentley, P. J.: Endocrines and osmoregulation. Zoophysiology and ecology 1. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Bertmar, G.: On the ontogeny of the chondral skull in Characidae, with a discussion on the chondrocranial base and visceral chondrocranium in fishes. Acta zool. (Stockh.) 40, 203–364 (1959).

    Google Scholar 

  • Bertmar, G.: On the ontogeny and the evolution of the arterial vascular system in the head of the African characidean fish Hepsetus odoë. Acta zool. (Stockh.) 43, 225–295 (1962).

    Google Scholar 

  • Bertmar, G.: The trigemino-facialis chamber, the cavum epiptericum and the cavum orbitonasale, three serially homologous extracranial spaces in fishes. Acta zool. (Stockh.) 44, 329–344 (1963).

    Google Scholar 

  • Bertmar, G.: On the development of the jugular and cerebral veins in fishes. Proc. Zool. Soc. London 144, 87–130 (1965).

    Google Scholar 

  • Bertmar, G.: Secondary folding in olfactory organ of young and adult sea trout. Acta zool. (Stockh.) 53, 113–120 (1972a).

    Google Scholar 

  • Bertmar, G.: Scanning electron microscopy of olfactory rosette in sea trout. Z. Zellforsch. 128, 336–346 (1972b).

    Google Scholar 

  • Bertmar, G.: Ecostructural studies on olfactory organ in young and adult sea trout (Osteichthyes, Salmonidae). Z. Morph. Tiere 72, 307–330 (1972c).

    Google Scholar 

  • Bertmar, G.: Cell populations in trout olfactory mucosa. In manuscript (1972d).

  • Bertmar, G.: Ultrastructure of the olfactory mucosa in homing Baltic sea trout. In manuscript (1972e).

  • Burger, J. W., Hess, W. N.: Function of the rectal gland in the spiny dogfish. Science 131, 670–671 (1960).

    Google Scholar 

  • Conte, F. P.: Salt secretion. In: Fish physiology, p. 241–292, eds. Hoar and Randall. New York: Academic Press 1969.

    Google Scholar 

  • Copeland, D. E.: The cytological basis of chloride transfer in the gills of Fundulus heteroclitus. J. Morph. 82, 201–227 (1948).

    Google Scholar 

  • Copeland, D. E.: Adaptive behaviour of the chloride cell in the gill of Fundulus heteroclitus. J. Morph. 87, 369–378 (1950).

    Google Scholar 

  • Datta-Munshi, J.: “Chloride cells” in the gills of fresh-water teleosts. Quart. J. micr. Sci. 105, 79–89 (1964).

    Google Scholar 

  • Doyle, W.: The principal cells of the salt-gland of marine birds. Exp. Cell Res. 211, 386–393 (1960).

    Google Scholar 

  • Doyle, W.: Tubule cells of the rectal salt-gland of Urolophus. Amer. J. Anat. 111, 223–238.

  • Doyle, W., Gorecki, D.: The so-called chloride cell of the fish gill. Physiol. Zool. 34, 81–85 (1961).

    Google Scholar 

  • Dunson, W. A., Packer, R. K., Dunson, M. K.: Sea snakes: an unusual salt gland under the tongue. Science 173, 437–441 (1971).

    Google Scholar 

  • Ellis, K., Abel, J.: Intercellular channels in the salt-secreting glands of marine turtles. Science 144, 1340–1342 (1964).

    Google Scholar 

  • Garcia Romeu, F., Maetz, J.: The mechanism of sodium and chloride uptake by the gills of fresh-water fish, Carassius auratus. J. gen. Physiol. 47, 1195–1207 (1964).

    Google Scholar 

  • Holliday, F. G. T.: Salinity. In: Marine ecology, vol. 1:2, p. 996–1083, ed. O. Kinne. London: Wiley-Interscience 1971.

    Google Scholar 

  • Holliday, F. G. T., Parry, G.: Electron microscopic studies of the acidophil cells in the gills and pseudobranchs of fish. Nature (Lond.) 193, 192 (1962).

    Google Scholar 

  • Kessel, F. G., Beams, H. W.: Electron microscope studies on the gill filaments of Fundulus heteroclitus from sea water and fresh water, with special reference to the ultrastructural organization of the “chloride cell”. J. Ultrastruct. Res. 6, 77–87 (1962).

    Google Scholar 

  • Keys, A. B., Willmer, E. N.: “Chloride secreting cells” in the gills of fishes, with special reference to common eel. J. Physiol. (Lond.) 76, 368–378 (1932).

    Google Scholar 

  • Krogh, A.: Osmotic regulation in aquatic animals. London: Cambridge Univ. Press 1939.

    Google Scholar 

  • Liu, C. K.: Osmotic regulation and “chloride secreting cells” in the paradise fish Macropodus opercularis. Sinensia 13, 15–20 (1942).

    Google Scholar 

  • Mills, D.: Salmon and trout. Edinburgh: Oliver & Boyd 1971.

    Google Scholar 

  • Moulton, D. G., Beidler, L. M.: Structure and function in the peripheral olfactory system. Physiol. Rev. 47, 1–52 (1967).

    Google Scholar 

  • Parry, G., Holliday, F. G. T., Blaxter, J. H. S.: “Chloride-secretory” cells in the gills of teleosts. Nature (Lond.) 183, 1248–1249 (1959).

    Google Scholar 

  • Pettengill, O., Copeland, D. E.: Alkaline phosphatase activity in the chloride cell of Fundulus heteroclitus and its relation to osmotic work. J. exp. Zool. 108, 235–242 (1948).

    Google Scholar 

  • Philpott, C.: The use of horseradish peroxidase to demonstrate functional continuity between the plasmalemma and the unique tubular system of the chloride cell. J. Cell Biol. 31, 88a (abstr.), (1966).

  • Philpott, C., Copeland, D. E.: Fine structure of chloride cells from three species of Fundulus. J. Cell Biol. 18, 389–404 (1963).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 209–212 (1963).

    Google Scholar 

  • Sabatini, D. D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 17–58 (1963).

    Google Scholar 

  • Schmidt-Nielsen, K.: The salt secreting glands in marine birds. Circulation 21, 955–967 (1960).

    Google Scholar 

  • Schmidt-Nielsen, K., Fänge, R.: Salt glands in marine reptiles. Nature (Lond.) 182, 783–785 (1958).

    Google Scholar 

  • Shirai, N., Utida, S.: Development and degeneration of the chloride cell during seawater and freshwater adaptation of the Japanese eel, Anguilla japonica. Z. Zellforsch. 103, 247–264 (1970).

    Google Scholar 

  • Straus, L. P.: A study of the fine structure of the so-called chloride cell in the gill of the guppy Lebistes reticulatus L. Physiol. Zool. 36, 183–198 (1963).

    Google Scholar 

  • Threadgold, L. T., Houston, A. H.: An electron microscope study of the “chloride cell” of Salmo salar L. Exp. Cell Res. 34, 1–23 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Thanks are due to Prof. Dr. Gunnar Bloom, Section of Histology, University of Umeå for interesting discussions. The author also wish to acknowledge the technical facilities and assistance in the use of the electron microscope to Miss Karin Ekström and Miss Marianne Borg. The research was supported by grant 2389-11, 13 and 15 from the Swedish Natural Science Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertmar, G. Labyrinth cells, a new cell type in vertebrate olfactory organs. Z.Zellforsch 132, 245–256 (1972). https://doi.org/10.1007/BF00307014

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307014

Key words

Navigation