Structure and function of blood and connective tissue cells of the fresh water pulmonate Lymnaea stagnalis studied by electron microscopy and enzyme histochemistry

  • T. Sminia


The morphology and the ultrastructure of the blood and connective tissue cells of Lymnaea stagnalis were studied. Special attention was paid to the role of these cells in the cellular defense mechanism (phagocytosis). This problem was investigated in injection experiments with enzyme histochemistry and electron microscopy.

The blood contains one type of cell, the amoebocyte. The amoebocytes are very active in phagocytosis. They phagocytoze various particulate materials like India ink, trypan blue, colloidal silver, ferritin, bacteria and zymosan granules. Digestion of the phagocytozed biotic material was observed. The cells show a very strong peroxidase activity. The acid phosphatase activity is weak. It increased after phagocytosis. Numerous amoebocytes loaded with phagocytozed inert material were still found three months after injection. It is concluded that migration of phagocytes to the exterior via various epithelia, as found in other molluscs, is of minor importance.

In the connective tissue 8 different cell types were distinguished: 1. pore cells, 2. granular cells, 3. vesicular connective tissue cells, 4. amoebocytes, 5. fibroblasts, 6. undifferentiated cells, 7. pigment cells, 8. muscle cells.

Pore cells are characterized by numerous invaginations of the cell membrane bridged by cytoplasmic tongues. Probably these cells produce haemocyanin. Granular cells contain numerous cysteine rich glycoprotein granules. The contents of these granules are released by exocytosis. It is suggested that these cells are involved in the production of blood proteins. The empty looking vesicular connective tissue cells appeared to contain large amounts of glycogen. Obviously these cells have nutritive functions.

True fixed macrophages were not observed in the connective tissue. Only the amoebocytes phagocytoze in large amounts various materials. Furthermore, the pore cells show a limited phagocytosis capacity.

Key words

Amoebocytes Connective tissue Lymnaea stagnalis Phagocytosis Haemocyanin Enzyme histochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aardt, W. J. van: Quantitative aspects of the water balance in Lymnaea stagnalis (L.). Neth. J. Zool. 18, 253–312 (1968).Google Scholar
  2. Anderson, W. A., Personne, P.: The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. J. Cell Biol. 44, 29–51 (1970).Google Scholar
  3. Baecker, R.: Die Mikromorphologie von Helix pomatia und einigen anderen Stylommatophoren. Ergebn. Anat. 29, 449–585 (1932).Google Scholar
  4. Baleydier, C.: Les évolutions cellulaires (conjunctive, musculaire et nerveuse) au cours de la régénération du rhinophore de Glossodoris messinensis (Idhering) (Gastropode Opisthobranche). Thesis, Université de Lyon, 1969.Google Scholar
  5. Bargeton, M.: Les variations saisonnières du tissu conjonctif vésiculeux de l'huître. Bull. Biol. France Belg. 76, 176–191 (1942).Google Scholar
  6. Barka, T., Anderson, P. J.: Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. J. Histochem. Cytochem. 10, 741–753 (1962).Google Scholar
  7. Bekius, R.: The circulatory system of Lymnaea stagnalis (L.). Neth. J. Zool. 22, 1–58 (1972).Google Scholar
  8. Belding, M. E., Klebanoff, S. J., Ray, C. G.: Peroxidase-mediated virucidal systems. Science 167, 195–196 (1970).Google Scholar
  9. Blundstone, E. R.: On the occurrence of glycogen as a constituent of the vesicular cells of the connective tissue of molluscs. Proc. roy. Soc. Lond. 38, 442–445 (1885).Google Scholar
  10. Boer, H. H., Wendelaar Bonga, S. E., Rooyen, N. van: Light and electron microscopical investigations on the salivary glands of Lymnaea stagnalis L. Z. Zellforsch. 76, 228–247 (1967).Google Scholar
  11. Brightman, M. W.: The distribution within the brain of ferritin injected into cerobrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol. 26, 99–123 (1965).Google Scholar
  12. Brown, A. C.: Elimination of foreign particles by the snail, Helix aspersa. Nature (Lond.) 213, 1145–1155 (1967).Google Scholar
  13. Brown, A. C., Brown, R. J.: The fate of thorium dioxide injected into the pedal sinus of Bullia (Gastropoda: Prosobranchiata). J. exp. Biol. 42, 509–519 (1965).Google Scholar
  14. Buchholz, K., Kuhlmann, D., Nolte, A.: Aufnahme von Trypanblau und Ferritin in die Blasenzellen des Bindegewebes von Helix pomatia und Cepaea nemoralis (Stylommatophora, Pulmonata). Z. Zellforsch. 113, 203–215 (1971).Google Scholar
  15. Carriker, M. R., Bilstad, N. M.: Histology of the alimentary system of the snail Lymnaea stagnalis appressa Say. Trans. micr. Soc. 65, 250–275 (1946).Google Scholar
  16. Cheney, D. P.: A summary of invertebrate leucocyte morphology with emphasis on blood elements of the manilla clam, Tapes semidecussata. Biol. Bull. 140, 353–368 (1971).Google Scholar
  17. Cheng, T. C., Galloway, P. C.: Transplantation immunity in mollusks: the histoincompatibility of Helisoma duryi normale with allografts and xenografts. J. Invert. Path. 15, 177–192 (1970).Google Scholar
  18. Cheng, T. C., Rifkin, E.: Cellular reactions in marine molluscs in response to helminth parasitism. A symp. on diseases of fishes and shellfishes. Am. Fish. Soc. spec. publ. 5, 443–496 (1970).Google Scholar
  19. Cheng, T. C., Thakur, A. S., Rifkin, E.: Phagocytosis as an internal defense mechanism in the Mollusca: with an experimental study of the role of leucocytes in the removal of ink particles in Littorina scabra Linn. Proc. Symp. Mollusca II, 546–563 (1969).Google Scholar
  20. Cohn, Z. A., Fedorko, M. E.: The formation and the fate of lysosomes. In: Lysosomes in biology and pathology I., eds. J. T. Dingle and H. B. Fell, p. 43–63. Amsterdam-London: North-Holland Publ. Co. 1969.Google Scholar
  21. Cuénot, L.: Etudes physiologiques sur les Gastéropods Pulmonés. Arch. Biol. (Liege) 12, 683–740 (1892).Google Scholar
  22. Cuénot, L.: L'excrétion chez les Mollusques. Arch. Biol. (Liege) 16, 4–96 (1899).Google Scholar
  23. Duve, C. de, Baudhin, P.: Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).Google Scholar
  24. Duve, C. de, Wattiaux, R.: Functions of lysosomes. Ann. Rev. Physiol. 28, 435–492 (1966).Google Scholar
  25. Fahimi, H. D.: The fine structural localization of endogenous and exogenous peroxidase activity in Kupffer cells of rat liver. J. Cell Biol. 47, 247–262 (1970).Google Scholar
  26. Feng, S. Y., Feng, J. S., Burke, C. N., Khairallah, L. H.: Light and electron microscopy of the leucocytes of Crassostrea virginica (Mollusca: Pelecypoda). Z. Zellforsch. 120, 222–245 (1971).Google Scholar
  27. Fernández, J.: Nervous system of the snail Helix aspersa. I. Structure and histochemistry of ganglionic sheath and neuroglia. J. comp. Neurol. 127, 157–182 (1966).Google Scholar
  28. Fernández, J.: Nervous system of the snail Helix aspersa. II. Fine structure of vascular channels and amebocytes associated with the ganglionic sheath. Z. Zellforsch. 118, 512–524 (1971).Google Scholar
  29. Galtsoff, P. S.: The american oyster, Grassostrea virginica Gmelin. Fish. Bull., Fish and Wildlife Serv. 64, 1–480 (1964).Google Scholar
  30. George, W. C., Ferguson, J. H.: The blood of gastropod molluscs. J. Morph. 86, 315–327 (1950).Google Scholar
  31. Goldfischer, S., Essner, E.: Further observations on the peroxidatic activities of microbodies (peroxisomes). J. Histochem. Cytochem. 17, 681–686 (1969).Google Scholar
  32. Graham, R. C., Karnovsky, M. J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney; ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302 (1966).Google Scholar
  33. Hyman, L. H.: The invertebrates, vol VI, Mollusca I. New York: McGraw-Hill 1967.Google Scholar
  34. Jong-Brink, M. de: Histochemical and electron microscope observations on the reproductive tract of Biomphalaria glabrata (Australorbis glabratus), intermediate host of Schistosoma mansoni. Z. Zellforsch. 102, 507–542 (1969).Google Scholar
  35. Kisker, L. G.: Über Anordnung und Bau der interstitiellen Bindesubstanzen von Helix pomatia L. Z. wiss. Zool. 121, 64–125 (1923).Google Scholar
  36. Kollmann, M.: Recherches sur les leucocytes et le tissu lymphoide des Invertébrés. Ann. Sci. Nat. Zool. IX, 8, 1–240 (1908).Google Scholar
  37. Lammens, J. J.: Growth and reproduction in a tidal flat population of Macoma balthica (L.). Neth. J. Sea Res. 3, 315–382 (1967).Google Scholar
  38. Lever, J., Jager, J. C., Westerveld, A.: A new anaesthetization technique for fresh water snails, tested on Lymnaea stagnalis. Malacologia 1, 331–337 (1964).Google Scholar
  39. Leydig, Fr.: Über Paludina vivipara. Z. wiss. Zool. 2, 125–197 (1850).Google Scholar
  40. Meek, G. A.: Apparent intracellular collagen synthesis. In: Cell structure and its interpretation, eds. S. M. McGee-Russell and K. F. A. Ross, p. 225–235. London: E. Arnold Ltd. 1968.Google Scholar
  41. Miller, F., Herzog, V.: Die Lokalisation von Peroxidase und saurer Phosphatase in eosinophilen Leukocyten während der Reifung. Elektronenmikroskopisch-cytochemische Untersuchungen am Knochenmark von Ratte und Kaninchen. Z. Zellforsch. 97, 84–110 (1969).Google Scholar
  42. Müller, G.: Morphologie, Lebenslauf und Bildungsort der Blutzellen von Lymnaea stagnalis L. Z. Zellforsch. 44, 519–556 (1956).Google Scholar
  43. Nakahara, H., Bevelander, G.: An electron microscope study of ingestion of thorotrast by amoebocytes of Pinctada radiata. Texas Rep. Biol. Med. 27, 102–110 (1969).Google Scholar
  44. Nicaise, G., Garronne, R., Pavans de Ceccatty, M.: Aspects membranaires du fibroblaste, au cours de la genèse du collagène chez Glossodoris (Gastéropode Opisthobranche). C. R. Acad. Sci. (Paris) 262, 2248–2250 (1966).Google Scholar
  45. Nisbet, R. H., Plummer, J. M.: Fibroblasts and collagen in Achatinidae. J. Physiol. (Lond.) 196, 18–20P (1968a).Google Scholar
  46. Nisbet, R. H., Plummer, J. M.: The fine structure of the cardiac and other molluscan muscle. Symp. Zool. Soc. (Lond.) 22, 193–211 (1968b).Google Scholar
  47. Novikoff, A. B., Goldfischer, S.: Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J. Histochem. Cytochem. 17, 675–680 (1969).Google Scholar
  48. Okun, M. R., Edelstein, L. M., Or, N., Hamada, G., Donnellan, B., Lever, W. F.: Histochemical differentiation of peroxidase-mediated from tyrosinase-mediated melanin formation in mammalian tissues. The biological significance of peroxidase-mediated oxidation of tyrosin to melanin. Histochemie 23, 295–309 (1970).Google Scholar
  49. Pan, C. T.: The general histology and topographic microanatomy of Australorbis glabratus. Bull. Mus. Comp. Zool. Harv. 119, 238–299 (1958).Google Scholar
  50. Pearse, A. G. E.: Histochemistry. Theoretical and applied. London: J. & A. Churchill 1968.Google Scholar
  51. Pease, D. C.: Histological technique for electron microscopy, 2nd ed. New York: Academic Press 1964.Google Scholar
  52. Plummer, J. M.: Collagen formation in Achatinidae associated with a specific cell type. Proc. Malac. Soc. (Lond.) 37, 189–198 (1966).Google Scholar
  53. Reade, P. C.: Phagocytosis in invertebrates. Aust. J. exp. Biol. med. Sci. 46, 219–229 (1968).Google Scholar
  54. Ruddell, C. L., Wellings, S. R.: The ultrastructure of the oyster brown cell, a cell with a fenestrated plasma membrane. Z. Zellforsch. 120, 17–28 (1971).Google Scholar
  55. Sanchis, C. A., Zambrano, D.: The structure of the central nervous system of a pulmonate mollusc (Cryptomphallus aspersa). I. Ultrastructure of the connective epineural sheath. Z. Zellforsch. 94, 62–71 (1969).Google Scholar
  56. Schmidt, R.: Struktur, topochemisches Verhalten und physiologische Bedeutung der granulierten Zellen (sogenannten Körnchenzellen) aus dem interstitiellen Bindegewebe des Fußes von Helix pomatia L. und ihre Beziehungen zum Sekret eiweißhaltiger Drüsen. Acta histochem. (Jena) 21, 323–354 (1965).Google Scholar
  57. Smith, D. S.: Insect cells. Their structure and function. Edinburgh: Oliver & Boyd Ltd. 1968.Google Scholar
  58. Stang-Voss, C.: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. III. Über die Haemocyten der Schnecke Lymnea stagnalis L. (Pulmonata). Z. Zellforsch. 107, 141–156 (1970).Google Scholar
  59. Stang-Voss, C., Staubesand, J.: Mikrotubuläre Formationen in Zisternen des endoplasmatischen Retikulums. Elektronenmikroskopische Untersuchungen an Bindegewebszellen von Lymnae stagnalis L. (Pulmonata). Z. Zellforsch. 115, 69–78 (1971).Google Scholar
  60. Stauber, L. A.: The fate of India ink injected intracardially into the oyster, Ostrea virginica Gmelin. Biol. Bull. 98, 227–241 (1950).Google Scholar
  61. Takatsuki, S.: On the nature and functions of the amoebocytes of Ostrea edulis. Quart. J. micr. Sci. 76, 379–431 (1934).Google Scholar
  62. Tripp, M. R.: The fate of foreign materials experimentally introduced into the snail Australorbis glabratus. J. Parasit. 47, 745–751 (1961).Google Scholar
  63. Tripp, M. R.: Defense mechanisms of mollusks. J. reticuloendoth. Soc. 7, 173–182 (1970).Google Scholar
  64. Wagge, L. E.: Amoebocytes. Int. Rev. Cytol. 4, 31–78 (1955).Google Scholar
  65. Wendelaar Bonga, S. E., Boer, H. H.: Ultrastructure of the renopericardial system in the pond snail Lymnaea stagnalis (L.). Z. Zellforsch. 94, 513–529 (1969).Google Scholar
  66. Wondrak, G.: Die Ultrastruktur der Zellen aus dem interstitiellen Bindegewebe von Arion rufus (L.), Pulmonata, Gastropoda. Z. Zellforsch. 95, 249–262 (1969).Google Scholar
  67. Zs.-Nagy, I., S.-Rózsa, K.: The ultrastructure and histochemical properties of the granulated cells in the heart of the snail Lymnaea stagnalis L. Acta biol. Acad. Sci. hung. 21, 121–133 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • T. Sminia
    • 1
  1. 1.Department of ZoologyFree UniversityAmsterdam-BuitenveldertThe Netherlands

Personalised recommendations