Skip to main content
Log in

The tubular endoplasmic reticulum in the amoebocytes of the shell-regenerating snail, Helix pomatia L.

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The tubular endoplasmic reticulum has been studied in the amoebocytes which are present in the connective tissue of the hepatopancreas of the snail, Helix pomatia. The reticulum is similar to that previously described within the glandular cells of the hepatopancreas. Two distinct components are recognizable in the reticulum—central main tubules approximately 100 mμ in diameter and connecting tubules about 20 mμ in width. The profile of this tubular network in cross-sections appears as a very regular, apparently crystalline array. The tubules are intimately associated with dense granular material, dense bodies and with mitochondria. The possible function of the tubular endoplasmic reticulum is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abolinš-Krogis, A.: The histochemistry of hepatopancreas of Helix pomatia (L.) in relation to the regeneration of the shell. Ark. Zool. 13, 159–201 (1961).

    Google Scholar 

  • Abolinš-Krogis, A.: The histochemistry of the mantle of Helix pomatia (L.) in relation to the repair of the damaged shell. Ark. Zool. 15, 461–474 (1963a).

    Google Scholar 

  • Abolinš-Krogis, A.: On the protein stabilizing substances in the isolated b-granules and in the regenerating membranes of the shell of Helix pomatia (L.). Ark. Zool. 15, 475–484 (1963b).

    Google Scholar 

  • Abolinš-Krogis, A.: Alterations in the fine structure of cytoplasmic organelles in the hepatopancreatic cells of shell-regenerating snail, Helix pomatia L. Z. Zellforsch. 108, 516–529 (1970).

    Google Scholar 

  • Anderson, W. A., Weissmann, A., Ellis, R. A.: A comparative study of microtubules in vertebrate and invertebrate cells. Z. Zellforsch. 71, 1–13 (1966).

    Google Scholar 

  • Baerwald, R. J., Boush, G. M.: Fine structure of the haemocytes of Periplaneta americana (Orthoptera:Blattidae) with particular reference to marginal bundles. J. Ultrastruct. Res. 31, 151–161 (1970).

    Google Scholar 

  • Behnke, O.: A comparative study of microtubules of disk-shaped blood cells. J. Ultrastruct. Res. 31, 61–75 (1970).

    Google Scholar 

  • Crang, R. E., Holsen, R. C., Hitt, J. B.: Calcite production in mitochondria of earthworm calciferous glands. Amer. Inst. Biol. Sci. Bull. 18, 299–301 (1968).

    Google Scholar 

  • Crombie, P. R., Burton, R. D., Ackland, N.: The ultrastructure of the corpus luteum of the guinea-pig. Z. Zellforsch. 115, 473–493 (1971).

    Google Scholar 

  • Forte, T. M., Forte, J. G.: Histochemical staining and characterization of glycoproteins in acid-secreting cells of frog stomach. J. Cell Biol. 47, 437–452 (1970).

    Google Scholar 

  • Grimstone, A. V., Cleveland, L. R.: The fine structure and function of the contractile axostyles of certain flagellates. J. Cell Biol. 24, 387–400 (1965).

    Google Scholar 

  • Hohman, W., Schraer, H.: The intracellular distribution of calcium in the mucosa of the avian shell gland. J. Cell Biol. 30, 317–331 (1966).

    Google Scholar 

  • Jones, A. R.: Mitochondria, calcification and waste disposal. Calcif. Tiss. Res. 3, 363–365 (1969).

    Google Scholar 

  • Karnaky, K., Jr., Philpott, C. W.: The cytochemical demonstration of surface-associated polyanions in a cell specialized for electrolyte transport. J. Cell Biol. 43, 64A (1969).

    Google Scholar 

  • Kaye, J. S.: The fine structure and arrangement of microcylinders in the lumina of flagellar fibers in cricket spermatids. J. Cell Biol. 45, 416–430 (1970).

    Google Scholar 

  • Lennep, E. W. van: Electron microscopic histochemical studies on salt-excreting glands in elasmobranchs and marine catfish. J. Ultrastruct. Res. 25, 94–108 (1968).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Martin, J. H., Matthews, J. L.: Mitochondrial granules in chondrocytes. Calcif. Tiss. Res. 3, 181–193 (1969).

    Google Scholar 

  • Matthews, J. L., Martin, J. H., Sampson, H. W., Kunin, A. S., Roan, J. H.: Mitochondrial granules in the normal and rachitic rat epiphysis. Calcif. Tiss. Res. 5, 91–99 (1970).

    Google Scholar 

  • Millonig, G.: Further observation on a phosphate buffer for osmium solution in fixation. In: Fifth Internat. Congr. for Electron Microscopy in Philadelphia (S. S. Breese, Jr., ed.), vol. 2, P-8. New York and London: Academic Press 1962.

    Google Scholar 

  • Newslead, J. D.: Observations on the relationship between “chloridetype” and “pseudobranch-type” cells in the gills of a fish, Oligocothus maculosus. Z. Zellforsch. 116, 1–6 (1971).

    Google Scholar 

  • Petrik, P., Bucher, O.: Ultrastructure of chloride cells in gill epithelium of goldfish. Z. Zellforsch. 96, 66–74 (1969).

    Google Scholar 

  • Plummer, J. M.: Collagen formation in Achatinidae associated with a specific cell type. Proc. malac. Soc. Lond. 37, 189–198 (1966).

    Google Scholar 

  • Porter, K. R., Tilney, L. G.: Microtubules and intracellular motility. Science 150, 382 (1965).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Sabatini, D. D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Sandborn, E. P., Koen, F., McNabb, J. D., Moore, G.: Cytoplasmic microtubules in mammalian cells. J. Ultrastruct. Res. 11, 123–138 (1964).

    Google Scholar 

  • Shapiro, I. M., Greenspan, J. S.: Are mitochondria directly involved in biological mineralisation? Calcif. Tiss. Res. 3, 100–102 (1969).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. I. Hydra. J. Cell Biol. 18, 367–388 (1963).

    Google Scholar 

  • Stang-Voss, G.: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. III. Über die Haemocyten der Schnecke Lymnea stagnalis L. (Pulmonata). Z. Zellforsch. 107, 142–156 (1970).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Google Scholar 

  • Wondrak, G.: Über Ultrastruktur der Zellen aus dem interstitiellen Bindegewebe von Arion rufus L. Pulmonata, Gastropoda. Z. Zellforsch. 95, 249–262 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by grants from the Swedish Natural Science Research Council, which are gratefully acknowledged. I am indebted to Miss G. Drugge for her technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abolinš-Krogis, A. The tubular endoplasmic reticulum in the amoebocytes of the shell-regenerating snail, Helix pomatia L.. Z.Zellforsch 128, 58–68 (1972). https://doi.org/10.1007/BF00306888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306888

Key words

Navigation