Advertisement

Theoretical and Applied Genetics

, Volume 43, Issue 3–4, pp 174–181 | Cite as

Somatic association of telocentric chromosomes carrying homologous centromeres in common wheat

  • T. Mello-Sampayo
Article

Summary

Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 BS and 6 BL) and a non-related (5 BL) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement — the Rabl orientation — and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.

Keywords

Common Wheat Complementary Chromosome Polar Orientation Homologous Pair Metacentric Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Avivi, L., Feldman, M., Bushuk, W.: The mechanism of somatic association in common wheat, Triticum aestivum L. I. Suppression of somatic association by colchicine. Genetics 62, 745–752 (1969).Google Scholar
  2. 2.
    Bajer, A., Östergren, G.: Centromere-like behaviour of non-centromere bodies. I. Neocentric activity in chromosome arms at mitosis. Hereditas (Lund) 47, 563–598 (1961).Google Scholar
  3. 3.
    Battaglia, E.: Cytogenetics of B chromosomes. Caryologia (Firenze) 17, 245–299 (1964).Google Scholar
  4. 4.
    Bennett, D.: Non-random association of chromosomes during mitotic prophase of the mouse. Cytologia (Tokyo) 31, 411–415 (1966).Google Scholar
  5. 5.
    Borisy, G. G., Taylor, E. W.: The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967).Google Scholar
  6. 6.
    Brown, W. V., Stack, S. M.: Somatic pairing as a regular preliminary to meiosis. Bull. Torrey Bot. Club 95, 369–378 (1968).Google Scholar
  7. 7.
    Burgess, J., Northcote, D. H.: Action of colchicine and heavy water on the polymerization of microtubules in wheat root meristem. J. Cell Sci. 5, 433–451 (1969).Google Scholar
  8. 8.
    Chauhan, K. P. S., Abel, W. O.: Evidence for the association of homologous chromosomes during premeiotic stages in Impatiens and Salvia. Chromosoma (Berl.) 25, 297–302 (1968).Google Scholar
  9. 9.
    Comings, D. E.: The rationale for an ordered arrangement of chromatin in the interphase nucleus. A. J. Human Genet. 20, 440–460 (1968).Google Scholar
  10. 10.
    Darlington, C. D.: Cytology. London: J. and A. Churchill Ltd. 1965.Google Scholar
  11. 11.
    Darvey, N. L., Driscoll, C. L.: Evidence against somatic association in hexaploid wheat. Chromosoma (Berl.) 36, 140–149 (1972).Google Scholar
  12. 12.
    Driscoll, C. J., Darvey, N. L., Barber, H. N.: Effect of colchicine on meiosis of hexaploid wheat. Nature 216, 687–688 (1967).Google Scholar
  13. 13.
    Feldman, M., Mello-Sampayo, T., Sears, E. R.: Somatic association in Triticum aestivum. Proc. Natl. Acad. Sci. U.S. 56, 1192–1199 (1966).Google Scholar
  14. 14.
    Feldman, M.: The effect of chromosomes 5B, 5 D and 5 A on chromosomal pairing in Triticum aestivum. Proc. Natl. Acad. Sci. U.S. 55, 1447–1453 (1966).Google Scholar
  15. 15.
    Gimenez-Martin, G.: Dotaciones cromosómicas en los mamiferos domésticos (nota preliminar). Genética Ibérica 14, 7–17 (1962).Google Scholar
  16. 16.
    Gimenez-Martin, G.: Structure of the centromere in telocentric chromosomes. Experientia 21, 391–394 (1965).Google Scholar
  17. 17.
    Gimenez-Martin, G., Lopez-Saez, J. F.: Cromosomas de mamiferos domésticos. Genética Iberica 18, 13–139 (1966).Google Scholar
  18. 18.
    Hsu, T. C.: Robertsonian fusion between homologous chromosomes in a natural population of the least cotton rat, Sigmodon minimus (Rodentia, Cricetidae). Experientia 25, 205–206 (1969).Google Scholar
  19. 19.
    John, B., Hewitt, G. M.: Karyotype stability and DNA variability in the Acrididae. Chromosoma (Berl.) 20, 155–172 (1966).Google Scholar
  20. 20.
    John, B., Hewitt, G. M.: Patterns and pathways of chromosome evolution within the Orthoptera. Chromosoma (Berl.) 25, 40–74 (1968).Google Scholar
  21. 21.
    John, B., Lewis, K. R.: The chromosome complement. Protoplasmatologia 6 (A). Wien: Springer-Verlag 1968.Google Scholar
  22. 22.
    Jones, K. W., Robertson, F. W.: Local of reiterated nucleotide sequences in Drosophila and mouse by in situ hybridization of complementary DNA. Chromosoma (Berl.) 31, 331–345 (1970).Google Scholar
  23. 23.
    Kitani, Y.: Orientation, arrangement and association of somatic chromosomes. Jap. J. Genet. 38, 244–256 (1963).Google Scholar
  24. 24.
    Limade-Faria, A.: The structure of the centromere of the chromosomes of rye. Hereditas 35, 77–85 (1949a).Google Scholar
  25. 25.
    Lima-de-Faria, A.: Genetics, origin and evolution of kinetochores. Hereditas 35, 442–444 (1949b).Google Scholar
  26. 26.
    Lima-de-Faria, A.: The Feulgen test applied to centromeric chromomeres. Hereditas 36, 60–74 (1950).Google Scholar
  27. 27.
    Lima-de-Faria, A.: Pachytene analysis of a chromosome derivative of centromere size. VIII International Congress of Botany Sec. 9, 42 (1954).Google Scholar
  28. 28.
    Lima-de-Faria, A.: The role of the kinetochore in chromosome organization. Hereditas 42, 85–160 (1956).Google Scholar
  29. 29.
    Maguire, Marjorie, P.: Evidence for homologous pairing of chromosomes prior to meiotic prophase in maize. Chromosoma (Berl.) 21, 221–231 (1967).Google Scholar
  30. 30.
    Marks, G. E.: The cytology of Oxalis dispar. Chromosoma (Berl.) 8, 650–670 (1957).Google Scholar
  31. 31.
    McGregor, A. C., Kezer, J.: The chromosomal localization of heavy satellite DNA in the testis of Plethodon cinaereus. Chromosoma (Berl.) 33, 168–182 (1971).Google Scholar
  32. 32.
    Metz, C. W.: Chromosome studies in Diptera. The paired association of chromosomes in the Diptera and its significance. J. Exp. Zool. 21, 213 to 279 (1916).Google Scholar
  33. 33.
    Müntzing, A., Lima-de-Faria, A.: Pairing and transmission of a small accessory iso-chromosome in rye. Chromosoma 6, 142–148 (1953).Google Scholar
  34. 34.
    Pardue, M. L., Gall, J. C.: Chromosome localization of mouse satellite DNA. Science 168, 1356–1358 (1970).Google Scholar
  35. 35.
    Rhoades, M. M.: Preferential segregation in maize. Heterosis. Ames: Iowa State College Press, 1952.Google Scholar
  36. 36.
    Sadasivaiah, R. S., Watkins, W., Rajhathy, T.: Somatic association of chromosomes in diploid and hexaploid Avena. Chromosoma (Berl.) 28, 468–481 (1969).Google Scholar
  37. 37.
    Siegel, S.: Non-parametric Statistics for the Behavioural Sciences. London: McGraw-Hill Book Co. Inc. 1956.Google Scholar
  38. 38.
    Steinitz-Sears, Lotti: Cytogenetic studies bearing on the nature of the centromere. Proc. XI Int. Congr. Genet. 1, 123 (1963).Google Scholar
  39. 39.
    Steinitz-Sears, Lotti: Somatic instability of telocentric chromosomes in wheat and the nature of the centromere. Genetics 54, 241–248 (1966).Google Scholar
  40. 40.
    Sved, J. A.: Telomere attachment of chromosomes. Some genetical and cytological consequences. Genetics 53, 747–756 (1966).Google Scholar
  41. 41.
    Taylor, W. E.: The mechanism of colchicine inhibition and the binding of H3 colchicine. J. Cell Biol. 25, 145–160 (1965).Google Scholar
  42. 42.
    Tjio, J. H., Levan, A.: Quadruple structure of the centromere. Nature 165, 368 (1950a).Google Scholar
  43. 43.
    Tjio, J. H., Levan, A.: The use of oxiquinoline in chromosome analysis. Anales de la Estacion Experimental de Aula Dei 2, 21–64 (1950b).Google Scholar
  44. 44.
    Tjio, J. H., Levan, A.: Chromosome analysis of three hyperdiploid ascites tumours of the mouse. Lunds Univ. Arsskr. (2) 50 (15) Kungl. Fysiogr. Sallsk. H. 65 (15), 1–38 (1954).Google Scholar
  45. 45.
    Wagenaar, E. B.: Attached chromosome ends at interphase in Allium cepa and Crepis capillaris. Canad. J. Genet. Cytol. 10, 769 (1968).Google Scholar
  46. 46.
    Wagenaar, E. B.: End-to-end chromosome attachment in mitotic interphase and their possible significance to meiotic chromosome pairing. Chromosoma (Berl.) 26, 410–426 (1969).Google Scholar
  47. 47.
    White, M. J. D.: Animal cytology and evolution. 2nd ed. London: Cambridge Univ. Press 1954.Google Scholar
  48. 48.
    Wolf, B. E.: Zur Karyologie der Eireifung und Furchung bei Cloeon dipterum (Bengtsson) (Ephemerida, Baetididae). Biol. Zentralbl. 79, 153–198 (1960).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • T. Mello-Sampayo
    • 1
  1. 1.Centro de BiologiaInstituto Gulbenkian de CiênciaOeirasPortugal

Personalised recommendations