Advertisement

Theoretical and Applied Genetics

, Volume 43, Issue 3–4, pp 134–138 | Cite as

Quinacrine fluorescence and Giemsa banding in trisomy 22

  • Hope H. Punnett
  • Mildred L. Kistenmacher
  • Maria A. Toro-Sola
  • Gertrude Kohn
Article

Summary

Using quinacrine fluorescence and Giemsa banding techniques we have identified an extra chromosome 22 in three non-mongoloid children with similar phenotypes and 47 chromosomes. In one of the children, the long arm of the extra 22 was shorter than usual. This 22q—chrcmcscme was observed in 4 normal family members with 46 chromosomes. In a fourth child, with similar physical findings, the extra G chromosome was shown to be neither a normal 21 nor 22. It must have arisen from a rearrangement in a parental gamete since it was not present in either parent's karyotype.

No constellation of clinical findings, in association with an extra G chromosome, is sufficient evidence for the diagnosis of trisomy 22. The positive identification of the extra chromosome must be made using fluorescence and banding.

Keywords

Family Member Clinical Finding Sufficient Evidence Similar Phenotype Normal Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Caspersson, T., Zech, L., Johansson, C.: Differential binding of alkylating fluorochromes in human chromosomes. Exptl. Cell Res. 60, 315–319 (1970a).Google Scholar
  2. 2.
    Caspersson, T., Hulten, M., Lindsten, J., Zech, L.: Distinction between extra G-like chromosomes by quinacrine mustard fluorescence. Exptl. Cell Res. 63, 240–243 (1970b).Google Scholar
  3. 3.
    Day, R. W., Miles, C. P.: Familial Down's syndrome with undetected translocation. J. Pediat. 67, 399–409 (1965).Google Scholar
  4. 4.
    German, J., Chaganti, R. S. K., Mirkinson, A. E., Marillo-Cucci, G.: tTrisomy 22. Am. J. Hum. Genet. 24, 56a (1972).Google Scholar
  5. 5.
    Gustavson, K. H., Hitrec, V., Santesson, B.: Three non-mongoloid patients of similar phenotype with an extra G-like chromosome. Clinical Genetics 3, 135–146 (1972).Google Scholar
  6. 6.
    Hsu, L. Y. F., Shapiro, L. R., Gertner, M., Lieber, E., Hirschhorn, K.: Trisomy 22: a clinical entity. J. Pediat. 79, 12–19 (1971).Google Scholar
  7. 7.
    Lejeune, J., Gautier, M., Turpin, R.: Les chromosomes humains en culture de tissus. C.R. Acad. Sci., Paris, 248, 602–603 (1959).Google Scholar
  8. 8.
    Nielsen, J., Tsuboi, T., Friedrich, U., Mikkelsen, M., Lund, B., Steinicke, O.: Additional small acrocentric chromosomes: two cases. J. Ment. Defic. Res. 13, 106–122 (1969).Google Scholar
  9. 9.
    Pardue, M. L., Gall, J. G.: Chromosomal localization of mouse satellite DNA. Science 170, 1356–1358 (1970).Google Scholar
  10. 10.
    Punnett, H. H., Vaughan, V. C., III: Two unusual chromosomal phenotypes. Abstracts, Third Intl. Cong. Hum. Genet., p. 81, 1966.Google Scholar
  11. 11.
    Ricci, N., Dallapiccola, B., Preto, G.: Familial transmission of a Gq-(Ph'-like) chromosome. Ann. Genet. 13, 263–264 (1970).Google Scholar
  12. 12.
    Seabright, M.: A rapid banding technique for human chromosomes. Lancet 2, 971–972 (1971).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hope H. Punnett
    • 1
    • 2
  • Mildred L. Kistenmacher
    • 1
    • 2
  • Maria A. Toro-Sola
    • 1
    • 2
  • Gertrude Kohn
    • 1
    • 2
  1. 1.St. Christopher's Hospital for Children, Department of PediatricsTemple University Medical SchoolUSA
  2. 2.Children's Hospital of PhiladelphiaUSA

Personalised recommendations