Skip to main content
Log in

Alteration and mass transfer in cataclasites and mylonites in 6.6 km of granitic crust at the Siljan impact structure, central Sweden

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Granitic rocks deformed by cataclasis and mylonitization on macro- (a few meters) and micro- (thin section) scales are found at depths down to 6.6km in the Siljan impact structure in central Sweden. Granites near fault planes exhibit: (1) fracturing, kinking, fragmentation, and recrystallization of feldspars into pure K and Na endmember varieties, (2) fragmentation, polygonization and development of undulose extinction in quartz, and (3) kinking, appearance of wavy extinction and alteration of biotite, chlorite, amphibole, and alteration of ilmenite and magnetite. Whole-rock chemical analyses of deformed and undeformed rocks show that deformed rocks are enriched in SiO2 (by about 5 wt.%) and depleted in other oxides by variable percentages. Apart from Rb and Co, the concentrations of other trace elements (including Ba, Sr, Zn, Zr, Pb, Cd, Cu, Cr, Ni, V, U, Th, La, and Li) are lower in deformed relative to undeformed rocks. Mass-balance calculations for a 1000 cm3 model granite which were based on modal mineralogy, whole-rock chemistry, and mineral analyses suggest that the break down of primary biotite, chlorite, and amphibole in deformed zones released elements to circulating fluids. These calculations also indicate liberation of water and a doubling of porosity (from ∼1 to 2%) during the deformation episodes. Later precipitation of minerals in shear and tension fractures reduced this porosity. Within the upper 2000 m of the Gravberg-1 well, the formation of fracture-filling minerals (smectite, calcite, hematite, chlorite, and albite) is impact-related, and was favored by active circulation of meteoric water. Fracture-filling minerals in the upper 2000 m of the borehole formed at temperatures of 70° to 200°C. Between depths of 2000 and 3500 m, fracture-filling mineral assemblages (dominated by Fe−Mg chlorite, sphene and epidote) suggest formation temperatures in the range of 150° to 300°C. Occurrence of pumpellyite and prehnite in some altered biotite and chlorite of the deformed zones between 3500 and 5500 m suggest preimpact metamorphism and formation temperature above 150°C. Below 5500 m, the mineral assemblages in the fractures are dominated by quartz, sphene, epidote, and some muscovite and chlorite, indicating a temperature range between 300° and 450°C. One of the possible origins for the CH4 and H2 gases detected in the Gravberg-1 well is a combination of hydrogen ions released by decomposition of hydrated silicates (biotite, chlorite, hornblende) with carbon. The presence of iron in the deformed granitic rocks prevented the resulting CH4 from being oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg G, Collini B, Schmitz B (1989) K−Ar isotope analyses from the Siljan Ring meteorite impact structure, Sweden. Geol Fören Stockholm Förh 111:355–360

    Google Scholar 

  • Aaro S, Cruden A (1988) Structure and geophysics of the Ljugaren Granite Massif, Dalarna, central Sweden (abstract). Nordiske Geologiske Vintermøde 18, Køpenhavn: 10

    Google Scholar 

  • AlDahan AA (1985) Mineral diagenesis and petrology of the Dala Sandstone, central Sweden. Bull Geol Inst Univ Uppsala, NS 12 (1989):1–48

    Google Scholar 

  • AlDahan AA (1989) The paragenesis of pumpellyite in granitic rocks from the Siljan area, central Sweden. Neues Jahrb Mineral Monatsh 1989:367–383

    Google Scholar 

  • AlDahan AA, Ericsson T, Collini B (1988) Mössbauer Spectroscopic data of granitic rocks from Gravberg-1 well, Siljan Ring structure, central Sweden. In: Bodén A, Ericsson KG (eds) Deep drilling in a crystalline bedrock vol 1. Springer, Berlin Heidelberg New York, pp 217–223

    Google Scholar 

  • Andriessen PA (1988) Fission track apatite analyses. Vattenfall internal report, 1988, p 9

  • Bates RL, Jackson JA (1980) Glossary of Geology. Am Geol Inst, Virginia, p 749

    Google Scholar 

  • Bergström J, Bruun Å, Leif E, Flodén T, Karis L, Olsson T (1983) Deep earth gas in Sweden, premisses for gas enrichment. Sver Geol Unders, Spec Publ

  • Bird KD, Helgeson CH (1981) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems. II. Equilibrium constraints in metamorphic/geothermal processes. Am J Sci 281:576–614

    Google Scholar 

  • Bottomly RS, York D, Grieve R (1978) 40Ar/39Ar ages of Scandinavian impact structures: 1 Mien and Siljan. Contrib Mineral Petrol 68:79–84

    Google Scholar 

  • Cherskiy NV, Melniko VP, Tsarev VP (1986) Generation of hydrocarbons from water and compounds in which carbon is in its highest oxidation state. Transactions (Doklady) of the USSR Academy of Sciences 288:50–53

    Google Scholar 

  • Chester FM, Friedman M, Logan JM (1985) Foliated cataclasites. Tectonophysics 111:139–146

    Google Scholar 

  • Eriksson KG, Landström O, Lind G, Malmqvist D (1989) Studies of the geothermal gradient and the rocks in the Gravberg-1 well, Siljan Ring structure, Central Sweden (unpublished lecture). Inter Geol Congr, Washington, 1989

  • Evans JP (1988) Deformation mechanisms in granitic rocks at shallow crustal levels. J Struct Geol 10:437–443

    Google Scholar 

  • Ferry JM (1978) Fluid interaction between granite and sediment during metamorphism, south-central Maine. Am J Sci 278:1025–1056

    Google Scholar 

  • Ferry JM (1985) Hydrothermal alteration of Tertiary igneous rocks from the Isle of Skye, northwest Scotland, II. Granites. Contrib Mineral Petrol 91:283–304

    Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414-A

  • Gold T (1988) The deep earth gas theory with respect to the results from the Gravberg-1 well. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock vol 1. Springer, Berlin Heidelberg New York, pp 18–27

    Google Scholar 

  • Gratier JP, Guiguet R (1986) Experimental pressure solution-deposition on quartz grains: the crucial effect of the nature of fluid. J Struct Geol 8:845–856

    Google Scholar 

  • Grieve RAF (1987) Terrestrial impact structures. Ann Rev Earth Planet Sci 15:245–270

    Google Scholar 

  • Grieve RAF (1988) The formation of large impact structures and constraints on the nature of Siljan. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock vol 1. Springer, Berlin Heidelberg New York, pp 328–348

    Google Scholar 

  • Hawthorne FC (1981) Crystal chemistry of the amphiboles. In: Veblen DR (ed) Amphiboles and other hydrous pyriboles-mineralogy. Rev Mineral 9: 1–102, Mineral Soc Am

    Google Scholar 

  • Hilton DR, Craig H (1989) The Siljan deep well: Helium isotope results. Geochim Cosmochim Acta 53:3311–3316

    Google Scholar 

  • Hjelmqvist S (1966) Beskrivning till berggrundskarta över Kopparbergs län. Sver Geol Unders Ca40

  • Hughes CJ (1982) Igneous Petrology. Elsevier, Amsterdam

    Google Scholar 

  • Jeffrey AW, Kaplan IR (1988) Hydrocarbons and inorganic gases in the Gravberg-1 well, Siljan ring, Sweden. Chem Geol 71:237–255

    Google Scholar 

  • Jovanovic S, Reed GWJ (1988) Trace elements in the Gravberg drillhole samples. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock 1. Springer, Berlin Heidelberg New York, pp 148–155

    Google Scholar 

  • Juhlin C (1988) Interpretation of the seismic reflectors in the Gravberg-1 well. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock 1. Springer, Berlin Heidelberg New York, pp 113–121

    Google Scholar 

  • Kamineni DC, Thivierge RH, Stone D (1988) Development of a cataclastic fault zone in an Archaean granitic pluton of the superior province: structural, geochemical, and geophysical characteristics. Am J Sci 288:458–494

    Google Scholar 

  • Kerrich R, Rehrig W (1987) Fluid motion associated with Tertiary mylonitization and detachment faulting: 18O/16O evidence from the Picacho metamorphic core complex, Arizona. Geology 15:58–62

    Google Scholar 

  • Kolthoff I, Sandell E (1952) Textbook of quantitative inorganic analysis. MacMillan, New York

    Google Scholar 

  • Komor S, Valley J (1990) Deep drilling at the Siljan Ring impact structure: oxygen isotope geochemistry of granite. Contrib Mineral Petrol 105:516–532

    Google Scholar 

  • Komor SC, Valley JW, Brown PE, Collini B (1988) Fluid inclusions in granite from the Siljan Ring impact structure and surrounding regions. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock 1. Springer, Berlin Heidelberg New York, pp 180–208

    Google Scholar 

  • Kresten P (1986) Geochemistry and tectonic setting of metavolcanics and granitoids from the Falun area, south central Sweden. Geol Fören Stockholm Förh 107:275–285

    Google Scholar 

  • Lair T (1988) Hydrocarbon gases in the crystalline rocks of the Gravberg-1 well, Swedish deep gas project. Marine and Petroleum Geology 5:370–377

    Google Scholar 

  • Lee Jk, Onstott TC (1987) 40Ar/39Ar analysis of Siljan Ring samples. Vattenfall internal report, 1987, p 22

  • Liou JG (1971) Stilbite-laumontite equilibrium. Contrib Mineral Petrol 31:171–177

    Google Scholar 

  • Lobato LM, Forman JMA, Fazikawa K, Fyfe WS, Kerrich R (1983) Uranium in overthrust Archean basement, Bahia, Brazil. Can Mineral 21:647–654

    Google Scholar 

  • Lorimer GW (1976) The plastic deformation of minerals. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley, London, pp 3–17

    Google Scholar 

  • McCaig AM (1988) Deep fluid circulation in fault zones. Geology 16:867–870

    Google Scholar 

  • McCaig AM, Wickham SM (1987) Oxygen isotope variations in metasomatically altered shear zones from the Pyrenees. Terra Cognita 7:137

    Google Scholar 

  • Mathez EA, Blacic JD, Beery J, Hollander M, Maggiore C (1987) Carbon in olivines: Results from nuclear reaction analysis. J Geophys Res 92:3500–3506

    Google Scholar 

  • Morad S, Filippidis A, AlDahan AA, Ounchanum P, Collini B (1989) Stilbite and stellerite in altered granitic rocks from the Siljan Ring structure, central Sweden. Bull Geol Inst Univ Uppsala, NS 12:143–149

    Google Scholar 

  • Norton D (1988) Metasomatism and permeability. Am J Sci 288:604–618

    Google Scholar 

  • Nyström J-O (1983) Pumpellyite-bearing rocks in central Sweden and extent of host rock alteration as a control of pumpellyite composition. Contrib Mineral Petrol 83:159–168

    Google Scholar 

  • Olsen TS, Kohlstedt DL (1985) Natural deformation and crystallization of some intermediate plagioclase feldspars. Tectonophysics 111:107–131

    Google Scholar 

  • Parry WT, Downey LM (1982) Geochemistry of hydrothermal chlorite replacing igneous biotite. Clays Clay Miner 30:81–90

    Google Scholar 

  • Patchett J (1978) Rb/Sr ages of Precambrian dolerites and syenites in southern and central Sweden. Sver Geol Unders C747

  • Reynolds SJ, Lister GS (1987) Structural aspects of fluid-rock interactions in detachment zones: Geology 15:362–366

    Google Scholar 

  • Rissler-Åkesson G (1988) Early results of the electric wire linelogging in the Gravberg-1 well. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock vol 1. Springer, Berlin Heidelberg New York, pp 104–112

    Google Scholar 

  • Rock-color Chart (1980) Publication of GSA. Huyskes-Enschede, The Netherlands

    Google Scholar 

  • Sibson RH (1977) Fault rocks and fault mechanisms. J Geol Soc London 133:191–213

    Google Scholar 

  • Sibson RH (1981) Controls on low-stress hydrofracture dilatancy in thrust, wrench and normal fault terrains. Nature 289:655–667

    Google Scholar 

  • Sinha AK, Hewitt DA, Rimstidt JD (1988) Metamorphic Petrology and Strontium isotope geochemistry associated with the development of mylonite: an example from the Brevard fault zone, north Carolina. Amer J Sci 288-A:115–147

    Google Scholar 

  • Sugisaki R, Ido M, Takeda H, Isobe Y, Hayashi Y, Nakamura N, Satake H, Mizutani Y (1983) Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J Geol 91:239–258

    Google Scholar 

  • Svensson NB (1973) Shatter cones from the Siljan structure, central Sweden. Geol Fören Stockholm Förh 95:139–143

    Google Scholar 

  • Valley JW, Komor SC, Baker K, Jeffrey AW, Kaplan IR, Råheim A (1988) Calcite crack cement in granite from the Siljan Ring, Sweden: Stable isotope results. In: Bodén A, Eriksson KG (eds) Deep drilling in crystalline bedrock 1. Springer, Berlin, pp 156–179

    Google Scholar 

  • Vattenfall (1985) Deep gas project, the Siljan Ring, Investigations and planning work carried out in 1985. Gas project G. 2, report no 5, p 45

  • Vattenfall (1987) Deep gas project Gravberg well, Status report 0-5.5 km. Internal report, p67

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AlDahan, A.A. Alteration and mass transfer in cataclasites and mylonites in 6.6 km of granitic crust at the Siljan impact structure, central Sweden. Contr. Mineral. and Petrol. 105, 662–676 (1990). https://doi.org/10.1007/BF00306532

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306532

Keywords

Navigation