Skip to main content
Log in

Inaktivierung BUdR-substituierter transformierender DNS durch monochromatisches UV-Licht verschiedener Wellenlängen

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Incorporation of 5-bromodeoxyuridine (BUdR) sensitizes the inactivability by UV of transforming DNA of Bacillus subtilis. The sensitization towards monochromatic UV between 230 and 350 nm has been studied for unifiliarly and bifiliarly substituted DNA. The results for irradiation with UV of 230 and 320 nm indicate that unifiliarly substituted DNA (TB) behaves like a one-to-one mixture of unsubstituted (TT) and bifiliarly substituted (BB) DNA. Since this is in accordance with what has been found (for longwave UV only) for phage λ we believe the result for 320 nm irradiation to mean that the UV induced lesions within the substituted strand interfere with the transcription rather than with the replication mechanism. This picture seems to be conclusive for phage λ and is in contrast to what is known about the lesions induced in unsubstituted DNA by UV of 260 nm.

The inactivation curve for TB for irradiation with UV of 260 or 290 nm simulates a one-to-one mixture of TT and BB only down to about 10% survivors. With higher doses the survival is lower than expected for a one-to-one mixture. This could indicate that at higher doses small amounts of photoproducts are produced in which both strands are involved.

In contrast to phage λ transforming DNA will give the above results without a radioprotective substance. It is discussed in how far, in the case of phage λ, the greater local DNA concentration and the protein coat can be the reason for this difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Alexander, P., and H. Moroson: Cross-linking of deoxyribonucleic acid to protein following ultra-violet irradiation of different cells. Nature (Lond.) 194, 882–883 (1962).

    Google Scholar 

  • Bodmer, W. F., and A. T. Ganesan: Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation. Genetics 50, 717–738 (1964).

    Google Scholar 

  • Bollum, F. J., and R. B. Setlow: Ultraviolet inactivation of DNA primer activity. I. Effects of different wavelengths and doses. Biochim. biophys. Acta (Amst.) 68, 599–607 (1963).

    Google Scholar 

  • Boyce, R., and R. Setlow: The action spectra for ultraviolet-light inactivation of systems containing 5-bromouracil-substituted deoxyribonucleic acid. I. Escherichia coli 15 T-A-U-. Biochim. biophys. Acta (Amst.) 68, 446–454 (1963).

    Google Scholar 

  • Buc, H.: On the mechanism of DNA integration in Bacillus subtilis transformation. 9th Annual Meeting of the Biophys. Soc., 1964 (Abstracts). Biophys. J. 5, WG 1 (1965).

  • Cohen, S. S., J. G. Flaks, H. D. Barner, M. R. Loeb, and J. Lichtenstein: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004–1012 (1958).

    Google Scholar 

  • —, and C. B. Fowler: Chemical studies on host virus interactions. IV. Tryptophan requirements in stages of virus multiplication in the Escherichia coli—T2 bacteriophage system. J. exp. Med. 85, 771–784 (1947).

    Google Scholar 

  • Fox, E., and M. Meselson: Unequal photosensitivity of the two strands of DNA in bacteriophage λ. J. molec. Biol. 7, 583–589 (1963).

    Google Scholar 

  • Fox-Keller, E.: Single-burst analysis for semiconserved phage. Virology 22, 649–650 (1964).

    Google Scholar 

  • Hershey, A. D., and N. E. Melechen: Synthesis of phage-precursor nucleic acid in the presence of chloramphenicol. Virology 3, 207–236 (1957).

    Google Scholar 

  • Hotz, G.: Photoreactivation of UV-damage in phage containing 5-bromouracil-DNA. Z. Vererbungsl. 95, 211–214 (1964).

    Google Scholar 

  • Langridge, R., and J. Marmur: X-ray diffraction study of a DNA which contains uracil. Science 143, 1450–1451 (1964).

    Google Scholar 

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961).

    Google Scholar 

  • Melechen, N. E.: The relationship of phage DNA synthesis to protein synthesis in replication of bacteriophage T2. Genetics 40, 584 (1955).

    Google Scholar 

  • Mennigmann, H. D.: Selektive Inaktivierung eines der beiden Stränge in der DNS-Doppelhelix durch BUdR-Einbau und anschließender Bestrahlung mit langwelligem UV-Licht. In: Symp. “Biochemie der Strahlenmutation und Struktur der Desoxyribonukleinsäure”. 8./9. März 1963.

  • Mennigmann, H. D.: Selective inactivation by longwave UV of the BUdR-containing strand in unifiliarly labelled DNA. Int. Congr. Photobiol. (Abstr.), p. 38–39, 1964.

  • —: On the nature of the inducible anti-bacterial agent of E. coli 15. Zbl. Bakt., I. Abt. Orig. 196, 207–210 (1965a).

    Google Scholar 

  • Mennigmann, H. D.: Asymmetrische Inaktivierung der Transformationsaktivität von einsträngig mit 5-Bromdesoxyuridin substituierter Desoxyribonukleinsäure aus Bacillus subtilis durch monochromatisches UV-Licht. Habil.-Schr. (1. Teil) Univ. Frankfurt/M., 1965 (b).

  • Mennigmann, H. D., and W. Szybalski: Transforming activity of DNA isolated from bacteria undergoing “thymine-less death”. Bact. Proc. 43 (1962).

  • Monk, G. S., and C. F. Ehret: Design and performance of a biological spectrograph. Radiat. Res. 5, 88–106 (1956).

    Google Scholar 

  • Opara-Kubinska, Z., Z. Kurylo-Borowska, and W. Szybalski: Genetic transformation studies. III. Effect of UV-light on the molecular properties of normal and halogenated DNA. Biochim. biophys. Acta (Amst.) 72, 298–309 (1963).

    Google Scholar 

  • —: Genetic transformation studies. II. Radiation sensitivity of halogen labeled DNA. Biochem. biophys. Res. Commun. 4, 288–291 (1961).

    Google Scholar 

  • Pauling, L.: The nature of the chemical bond, p. 189. Ithaca (N.Y.): Cornell Univ. Press 1945.

    Google Scholar 

  • Setlow, R., and R. Boyce: The action spectra for ultraviolet-light inactivation of systems containing 5-bromouracil-substituted deoxyribonucleic acid. II. Bacteriophage T4. Biochim. biophys. Acta (Amst.) 68, 455–461 (1963).

    Google Scholar 

  • Setlow, R. B., P. A. Swenson, and W. L. Carrier: Thymine dimers and inhibition of DNA synthesis by ultraviolet irradiation of cells. Science 142, 1464–1466 (1963).

    Google Scholar 

  • Smith, K. C.: A chemical basis for the sensitization of bacteria to UV-light by incorporated bromouracil. Biochem. biophys. Res. Commun. 6, 458–463 (1961).

    Google Scholar 

  • —: Dose dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye. Biochem. biophys. Res. Commun. 8, 157–163 (1962).

    Google Scholar 

  • —: Photochemistry of the nucleic acids. In: Photophysiology (ed. A. C. Giese), vol. II, p. 329–388. New York: Acad. Press 1964.

    Google Scholar 

  • Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072 (1958).

    Google Scholar 

  • Szybalski, W.: Sampling of virus particles and macromolecules in an equilibrium density gradient. Experientia (Basel) 16, 164 (1960).

    Google Scholar 

  • Takahashi, I.: Transducing phages for Bacillus subtilis. J. gen. Microbiol. 31, 211–217 (1963).

    Google Scholar 

  • — and J. Marmur: Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of transducing phage for Bacillus subtilis. Nature (Lond.) 197, 794–795 (1963a).

    Google Scholar 

  • —: Glucosylated DNA from transducing phage for Bacillus subtilis. Biochem. biophys. Res. Commun. 10, 289–292 (1963b).

    Google Scholar 

  • Tomizawa, J. I.: Sensitivity of phage precursor nucleic acid synthesized in the presence of chloramphenicol to ultraviolet irradiation. Virology, 6, 55–80 (1958).

    Google Scholar 

  • —: The effect of chloramphenicol on deoxyribonucleic acid synthesis and the development of resistance to ultraviolet irradiation in E. coli infected with bacteriophage T2. J. gen. Physiol. 39, 553–565 (1956).

    Google Scholar 

  • Vogel, H. J., and D. M. Bonner: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).

    Google Scholar 

  • Wacker, A., H. D. Mennigmann, and W. Szybalski: Effects of “visible” light on 5-bromouracil-labelled DNA. Nature (Lond.) 196, 685–686 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennigmann, HD. Inaktivierung BUdR-substituierter transformierender DNS durch monochromatisches UV-Licht verschiedener Wellenlängen. Molec. Gen. Genetics 99, 76–87 (1967). https://doi.org/10.1007/BF00306460

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306460

Navigation