Skip to main content
Log in

Enzyme-histochemical studies on the muscle spindle

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

Detailed studies have been made on the distribution of several enzymes in the muscle spindles of the hand and foot interosseous muscles and M. longissimus dorsi of the rhesus monkey as well as in those of the hand interosseous muscles of the squirrel monkey. The intrafusal muscle fibers (IMF) of the rhesus monkey can be classified into two types by the reaction intensity at the polar regions for adenosine triphosphatases and by the enzymes concerning the carbohydrate metabolism except glucose-6-phosphate dehydrogenase, while the extrafusal muscle fibers (EMF) show three types of reactions for the enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid (TCA) cycle. The IMF and EMF of the squirrel monkey are more variable than those of the rhesus monkey for the glycogen breakdown enzyme. It is possible that the small IMF are more capable of energy production through the TCA cycle than the large IMF and the EMF in both species. The positive cholinesterases reactions are found around the polar regions of the IMF, while only the rim of the equator of the IMF shows monoamine oxidase activity. The pericapsular epithelial cells of the muscle spindle seem to be metabolically similar to the perineural epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., and N. Shimizu: Histochemical method for demonstrating aldolase. Histochemie 4, 209–212 (1964).

    Google Scholar 

  • Boyd, I. A.: An isolated mammalian muscle-spindle preparation. J. Physiol. (Lond.) 144, 11 P-12 P (1958).

    Google Scholar 

  • Brzezinski, D. K. Von: Untersuchungen zur Histochemie der Muskelspindeln. I. Topochemie der Polysaccharide. Acta histochem. (Jena) 12, 75–79 (1961 a).

    Google Scholar 

  • —: Untersuchungen zur Histochemie der Muskelspindeln. II. Zur Topochemie und Funktion des Spindelraumes und der Spindelkapsel. Acta histochem. (Jena) 12, 277–288 (1961b).

    Google Scholar 

  • Burstone, M. S.: Enzyme histochemistry and its application in the study of neoplasm. New York and London: Academic Press 1962.

    Google Scholar 

  • Coërs, C., and J. Durand: Données morphologiques nouvelles sur l'innervation des fuseaux neuromusculaires. Arch. Biol. (Liège) 67, 685–713 (1956).

    Google Scholar 

  • Cooper, S.: Muscle spindles and other muscle receptors. In: The structure and function of muscle (G. H. Bourne, ed.), vol. 1, p. 381–420. New York: Academic Press 1960.

    Google Scholar 

  • Coupland, R. E., and R. L. Holmes: The use of cholinesterase techniques for the demonstration of peripheral nervous structures. Quart. J. micr. Sci. 98, 327–330 (1957).

    Google Scholar 

  • Crowe, A., and P. B. C. Matthews: The effects of stimulation of static and dynamic fusimotor fibres on the response of stretching of the primary endings of muscle spindles. J. Physiol (Lond.) 174, 109–131 (1964a).

    Google Scholar 

  • —: Further studies of static and dynamic fusimotor fibres. J. Physiol. (Lond.) 174, 132–151 (1964b).

    Google Scholar 

  • Eyzaguirre, C.: Functional organization of neuromuscular spindle in toad. J. Neurophysiol. 20, 523–542 (1957).

    Google Scholar 

  • Germino, N. I., and H. D'Albora: Succinic-dehydrogenase activity in the neuromuscular spindles of the chick. Experientia (Basel) 21, 45–46 (1965).

    Google Scholar 

  • Glenner, G. G., H. J. Burtner, and G. W. Brown: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem. 5, 591–600 (1957).

    Google Scholar 

  • Henneman, E., and C. B. Olson: Relations between structure and function in the design of skeletal muscles. J. Neurophysiol. 28, 581–598 (1965).

    Google Scholar 

  • Hess, R., D. G. Scarpelli, and A. G. E. Pearse: The cytochemical localization of oxidative enzymes. II. Pyridine nucleotide-linked dehydrogenases. J. biophys. biochem. Cytol. 4, 753–760 (1958).

    Google Scholar 

  • Kielley, W. W., and L. B. Bradley: The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J. biol. Chem. 218, 653–659 (1956).

    Google Scholar 

  • —, and O. Meyerhof: Studies on adenosinetriphosphatase of muscle. II. A new magnesium-activated adenosinetriphosphatase. J. biol. Chem. 176, 591–601 (1948).

    Google Scholar 

  • Kuffler, S. W., C. C. Hunt, and J. P. Quilliam: Function of medullated small-nerve fibers in mammalian ventral roots: Efferent muscle spindle innervation. J. Neurophysiol. 14, 29–54 (1951).

    Google Scholar 

  • Matthews, B. H. C.: Nerve endings in mammalian muscle. J. Physiol. (Lond.) 78, 1–53 (1933).

    Google Scholar 

  • Nachlas, M. M., K. C. Tsou, E. De Souza, C. S. Cheng, and A. M. Seligman: Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5, 420–436 (1957).

    Google Scholar 

  • Nyström, B.: Muscle-spindle histochemistry. Science 155, 1424–1426 (1967).

    Google Scholar 

  • Ogata, T., and M. Mori: Histochemical demonstration of the three types of intraf usal fibers of muscle spindles, a study on oxidative enzymes. Acta Med. Okayama 16, 347–350 (1962).

    Google Scholar 

  • —: Histochemical study of oxidative enzymes in vertebrate muscles. J. Histochem. Cytochem. 12, 171–182 (1964).

    Google Scholar 

  • Padykula, H. A., and E. Herman: Factors affecting the activity of adenosine triphosphatase and other phosphatases measured by histochemical techniques. J. Histochem. Cytochem. 3, 161–169 (1955).

    Google Scholar 

  • —: The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem. 3, 170–195 (1955).

    Google Scholar 

  • Shantha, T. R., M. N. Golarz, and G. H. Bourne: Histological and histochemical observations on the capsule of the muscle spindle in normal and denervated muscle. Acta anat. (Basel) (in press).

  • Sherrington, C. S.: On the anatomical constitution of nerves of skeletal muscles; with remarks on recurrent fibres in the ventral spinal nerve-root. J. Physiol. (Lond.) 17, 211–255 (1894/1895).

    Google Scholar 

  • Takeuchi, T., and H. Kuriaki: Histochemical detection of phosphorylase in animal tissues. J. Histochem. Cytochem. 3, 153–160 (1955).

    Google Scholar 

  • Wachstein, M., and E. Meisel: Histochemistry of hepatic phosphatases at a physiologic pH with special reference to the demonstration of bile canaliculi. Amer. J. clin. Path. 27, 13–23 (1957).

    Google Scholar 

  • Wirsén, C., and K. S. Larsson: Histochemical differentiation of skeletal muscle in foetal and newborn mice. J. Embryol. exp. Morph. 12, 759–767 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Visiting scientist from the Department of Anatomy, Tokyo Medical and Dental University, Tokyo, Japan.

T. R. Shanthaveerappa in previous publications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, Y., Shantha, T.R. & Bourne, G.H. Enzyme-histochemical studies on the muscle spindle. Histochemie 16, 1–8 (1968). https://doi.org/10.1007/BF00306206

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306206

Keywords

Navigation