Skip to main content
Log in

Distribution of the nuclear receptor for vitamin D in female and male zebra finches, Taeniopygia guttata

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In this study, we describe the distribution of high affinity binding sites for 1,25(OH)2-vitamin D3 (1,25-D3) in the zebra finch (Taeniopygia guttata). Four hours following the injection of tritiated 1,25-D3, binding of the steroid hormone was found primarily in the cell nuclei of a variety of differnt organs. Neurons in numerous discrete regions of the forebrain were labeled. These forebrain regions included the nucleus accumbens, nucleus dorsomedialis posterior thalami, lobus parolfactorius, nucleus septalis lateralis and medialis, nucleus septalis, lamina medullaris dorsalis, nucleus striae terminalis, palaeostriatum augmentatum, and stratum griseum. The choroid plexuses, however, remained clear. Labeled cells were seen in several organs of the alimentary canal, in both the exocrine and the endocrine pancreas, in the proximal tubules of the kidney, in the spleen, in the bursa of Fabricius, and in the heart. The basal cells of the uropygial gland were also labeled. No specific retention was evident in the gonads of either sex. Vitamin D is thus bound by cells in systems with widely different functions. Since several of the labeled tissues are not primarily involved in calcium homeostasis, the data support the concept that vitamin D-soltriol is a steroid hormone that acts as a seasonal neuroendocrine-endocrine regulator and somatotrophic modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe JY, Takita T, Miyaura C, Suda T, Nishii Y (1989) A synthetic analogue of vitamin D3, 22-oxa-1a,25-dihydroxy-vitamin D3, is a potent modulator of in vivo immuno-regulating activity without inducing hypercalcemia in mice. Endocrinology 124:2645–2647

    Google Scholar 

  • Adams JS, Clemens TL, Parrish JA, Holick MF (1982) Vitamin D metabolism after ultraviolet irradiation of normal and vitamin D-deficient subjects. N Engl J Med 306:722–725

    Google Scholar 

  • Bentley PJ (1983) Urinary loss of calcium in an anuran amphibian (Bufo marinus) with a note on the effects of calcemic hormones. Comp Biochem Physiol [B] 76:717–719

    Google Scholar 

  • Bidmon H-J, Stumpf WE (1991) Phylogeny of receptors for 1,25-dihydroxyvitamin D3 (soltriol) in vertebrates and invertebrates. In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D gene regulation, structure-function, analogies, and clinical application. De Gruyter, Berlin, pp 673–674

    Google Scholar 

  • Bidmon H-J, Stumpf WE (1992) Choroid plexus, ependyma and arachnoidea express receptors for vitamin D: differences between seasonal and non-seasonal breeders. Prog Brain Res 91:279–283

    Google Scholar 

  • Bidmon H-J, Gutkowska J, Murakami R, Stumpf WE (1991 a) Vitamin D receptors in heart: effects on atrial natriuretic factor. Experientia 47:958–962

    Google Scholar 

  • Bidmon H-J, Mayerhofer A, Heiss C, Bartke A, Stumpf WE (1991 b) Vitamin D (soltriol) receptors in choroid plexus and ependyma: their species-specific presence. Mol Cell Neurosci 2:145–156

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M (1981) Effect of 1,25-dihydroxyvitamin D3 on insulin secretion. Diabetes 30:382–386

    Google Scholar 

  • Clark SA, Stumpf WE, Sar M, DeLuca HF (1987) 1,25-Dihydroxyvitamin D3 target cells in immature pancreatic islets. Endocrinol Metab Clin North Am 16:E99-E105

    Google Scholar 

  • Dokoh S, Donaldson CA, Marion SL, Pike JW, Haussler MR (1983) The ovary: a target for 1,25-dihydroxyvitamin D3. Endocrinology 112:200–206

    Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone superfamily. Science 240:889–895

    Google Scholar 

  • Haussler MR (1986) Vitamin D receptors: nature and function. Annu Rev Nutr 6:527–562

    Google Scholar 

  • Hermes MLHJ, Buijs RM, Masson-Pévet M, Woude TP van der, Pévet P, Brenkle R, Kirsch R (1989) Central vasopressin infusion prevents hibernation in the European hamster (Cricetus cricetus). Proc Natl Acad Sci USA 86:6408–6411

    Google Scholar 

  • Hermes MLHJ, Buijs RM, Masson-Pévet P, Pévet P (1990) Seasonal changes in vasopressin in the brain of the garden dormouse (Eiiomys quercimus). J Comp Neurol 293:340–346

    Google Scholar 

  • Hochhauser E, Barak J, Kushnir T, Navon G, Meyer MS, Edelstein S, Vidne BA (1988) Vitamin D deficiency and cardiac function in isolated chick hearts. In: Norman AW, Schaefer K, Grigoleit H-G, Herrath D von (eds) Vitamin D. Molecular, cellular and clinical endocrinology. De Gruyter, Berlin, pp 760–761

    Google Scholar 

  • Holick MF, Smith E, Pincus S (1987) Skin as the site of vitamin D synthesis and target tissue for 1,25-dihydroxyvitamin D3. Arch Dermatol Res 123:1677–1683

    Google Scholar 

  • Jacob A, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol. 4. Academic Press, New York, pp 199–325

    Google Scholar 

  • Kim YS, Stumpf WE, Sar M, Martinez-Vargas MC (1978) Estrogen and androgen target cells in the brain of fishes, reptiles, and birds: phylogeny and ontogeny. Amer Zool 18:425–433

    Google Scholar 

  • Martinez-Vargas MC, Stumpf WE, Sar M (1976) Anatomical distribution of estrogen targen cells in the avian CNS: a comparison with the mammalian CNS. J Comp Neurol 167:83–104

    Google Scholar 

  • Marx SJ, Liberman UA, Eil C (1983) Calciferols: actions and deficiencies in action. Vitam and Horm 40:235–308

    Google Scholar 

  • Minghetti PP, Norman AW (1988) 1,25(OH)2-vitamin D3 receptors: gene regulation and genetic circuitry. FASEB J 2:3043–3053

    Google Scholar 

  • Musiol IM, Stumpf WE, Bidmon H-J, Mayerhofer A, Heiss C, Bartke A (1992) Vitamin D nuclear binding to neurons of septal substriatal and amygdaloid area in the Siberian hamster. Neuroscience 48:841–848

    Google Scholar 

  • Norman AW, Nemere I, Zhou LX, Bishop JE, Lowe KE, Maiyar AC, Collins ED, Taoka T, Sergeev I, Farbach-Carson MC (1992) 1,25(OH)2-Vitamin D3, a steroid hormone that produces biological effects via both genomic and nongenomic pathways. J Steroid Biochem Molec Biol 41:231–240

    Google Scholar 

  • Petrini M, Bianchi F, Dolfi A, Lupetti M (1991) Distribution of the 1,25-dihydroxy-vitamin D3 receptor in the bursa of Fabricius of chicken. Experientia 47:838–841

    Google Scholar 

  • Pike JW, Gooze LL, Haussler MR (1980) Biochemical evidence for 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary, and placental tissues. Life Sci 26:407–414

    Google Scholar 

  • Provedini DM, Tsoukas CD, Deftos LJ, Manolagas SC (1986) 1a,25-Dihydroxyvitamin D3-binding macromolecules in human B lymphocytes: effects on immunoglobulin production. J Immunol 136:2734–2740

    Google Scholar 

  • Reinhardt TA, Horst LR, Littledike ED, Beitz DC (1982) 1,25-Dihydroxyvitamin D3 receptor in bovine thymus gland. Biochem Biophys Res Commun 103:1012–1018

    Google Scholar 

  • Rigby WFC, Denone S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. J Clin Invest 79:1659–1664

    Google Scholar 

  • Schleicher G, Privette TH, Stumpf WE (1989) Distribution of soltriol [1,25(OH)2-vitamin D3] binding sites in male sex organs of the mouse: an autoradiographic study. J Histochem Cytochem 37:1083–1086

    Google Scholar 

  • Schleicher G, Bartke A, Bidmon H-J, Stumpf WE (1993) Dihydroxycholecalciferol (1,25(OH)2-vitamin D3) binding sites in male sex organs of Siberian hamster (Phodopus sungorus). An autoradiographic study. J Steroid Biochem Molec Biol 46:331–335

    Google Scholar 

  • Shinki T, Kadofuku T, Suda T (1986) Spermidine N'-acetyltransferase has a larger role than ornithine decarboxylase in 1α,25-dihydroxyvitamin D3-induced putrescine synthesis. J Biol Chem 261:11712–11716

    Google Scholar 

  • Sossinka R (1980 a) Reproductive strategies of estrilidid finches in different climate zones of the tropics: gonadal maturation. Proc Int Ornithol Congr Berlin 17th, 1978, pp 208–215

  • Sossinka R (1980 b) Ovarian development in an opportunistic breeder, the zebra finch Poephila guttata castanotis. J Exp Zool 211:225–230

    Google Scholar 

  • Srivastav AK, Srivastav SK, Srivastav SK, Swarup K (1986) Serum calcium level of freshwater snake, Natrix piscator, in response to vitamin D3 administration. J Physiol (Paris) 81:17–18

    Google Scholar 

  • Stokes TM, Leonard CM, Nottebohm F (1974) The telencephalon, diencephalon, and mesencephalon of canary, Serinus canaria, in stereotaxic coordinates. J Comp Neurol 156:337–374

    Google Scholar 

  • Stumpf WE (1988) Vitamin D-soltriol, the heligenic steroid hormone: somatotrophic activator and modulator. Histochemistry 89:209–219

    Google Scholar 

  • Stumpf WE, Bidmon H-J (1990) Vitamin D3 receptors and their organ-specific distribution in lower vertebrates (Pisces, Amphibia, Reptilia). Verh Dtsch Zool Ges 83:591–592

    Google Scholar 

  • Stumpf WE, Duncan GE (1990) High-resolution autoradiographic mapping of drug and hormone receptors. In: Conn PM (ed), Methods in neurosciences: quantitative and qualitative microscopy, vol 3. Academic Press, New York, pp 35–49

    Google Scholar 

  • Stumpf WE, O'Brien LP (1987 a) 1,25(OH)2 vitamin D3 sites of action in brain. Histochemistry 87:393–406

    Google Scholar 

  • Stumpf WE, O'Brien LP (1987 b) Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry 87:53–58

    Google Scholar 

  • Stumpf WE, Privette TH (1991) The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms. J Steroid Biochem Molec Biol 39:283–289

    Google Scholar 

  • Stumpf WE, Sar M (1978) Anatomical distribution of estrogen, androgen, progestin, corticosteroid and thyroid hormone target sites in the brain of mammals: phylogeny and ontogeny. Amer Zool 18:435–445

    Google Scholar 

  • Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF (1979) Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 206:1188–1190

    Google Scholar 

  • Stumpf WE, Clark SA, Kim YS, DeLuca HF (1985) Comparison of cellular and subcellular distribution of vitamin D metabolites (1,25(OH)2 vitamin D3, 24,25(OH)2 vitamin D3, 25(OH) vitamin D3) in target tissues. In: Norman AW, Schaefer K, Grigoleit HG, Herrath D von (eds) Vitamin D, a biochemical and clinical update. De Gruyter, Berlin, pp 119–120

    Google Scholar 

  • Stumpf WE, Sar M, O'Brien LP, Morin J (1988) Pyloric gastrin-producing cells and pyloric sphincter muscle cells are nuclear targets for 3H 1,25(OH)2 vitamin D3. Histochemistry 89:447–450

    Google Scholar 

  • Stumpf WE, Bidmon H-J, Murakami R, Heiss C, Mayerhofer A, Bartke A (1990) Sites of action of soltriol (vitamin D) in hamster spleen, thymus, and lymph node, studied by autoradiography. Histochemistry 94:121–125

    Google Scholar 

  • Stumpf WE, Bidmon H-J, Li L, Pilgrim C, Bartke A, Mayerhofer A, Heiss C (1992) Nuclear receptor sites for vitamin D-soltriol in midbrain and hindbrain of Siberian hamster (Phodopus sungorus) assessed by autoradiography. Histochemistry 98:155–164

    Google Scholar 

  • Stumpf WE, Perez-Delgado MM, Li L, Bidmon H-J, Tuohimaa P (1993) Vitamin D3 (soltriol) nuclear receptors in abdominal scent gland and skin of Siberian hamster (Phodopus sungorus) localized by autoradiography and immunohistochemistry. Histochemistry 100:115–119

    Google Scholar 

  • Sundell K, Björnsson BT (1990) Effects of vitamin D3, 24,25(OH)2-vitamin D3, and 1,25(OH)2-vitamin D3 on in vitro intestinal calcium absorption in marine teleost, Atlantic cod (Gadus morhua). Gen Comp Endocrinol 78:74–79

    Google Scholar 

  • Takeuchi A, Okano T, Torii M, Hatanaka Y, Kobayashi T (1987) Comparative studies on the contents of vitamin D3, 25-hydroxy vitamin D3 and 7-dehydrocholesterol in fish liver. Comp Biochem Physiol [B] 88:569–573

    Google Scholar 

  • Walters MR (1981) An estrogen-stimulated 1,25-dihydroxyvitamin D3 receptor in rat uterus. Biochem Biophys Res Commun 103:721–726

    Google Scholar 

  • Walters MR (1992) Newly identified actions of vitamin D endocrine system. Endocrinol Rev 13:719–764

    Google Scholar 

  • Watts AG (1991) The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM (eds) Suprachiasmatic nucleus: the mind's clock. Oxford University Press, New York, pp 77–106

    Google Scholar 

  • Weishaar RE, Simpson RU (1987) Vitamin D3 and cardiovascular function in rats. J Clin Invest 79:1706–1712

    Google Scholar 

  • Williams PJ, Brain PC, Peddie MJ, Taylor TG (1988) Effects of estrone and estradiol-17β on 25-hydroxychole-calciferol hydroxylase activities in female Japanese quail. Gen Comp Endocrinol 71:97–104

    Google Scholar 

  • Wollnik F (1992) Neural control of circadian rhythms in mammals. Verh Dtsch Zool Ges 852:231–246

    Google Scholar 

  • Ziswiler V (1967) Vergleichende morphologische Untersuchungen am Verdauungstrakt körnerfressender Singvögel zur Abklärung ihrer systematischen Stellung. Zool Jb Syst 94:427–520

    Google Scholar 

  • Ziswiler V, Farner DS (1972) Digestion and the digestive system. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 2. Academic Press, New York, pp 343–405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidmon, HJ., Stumpf, W.E. Distribution of the nuclear receptor for vitamin D in female and male zebra finches, Taeniopygia guttata . Cell Tissue Res 276, 333–345 (1994). https://doi.org/10.1007/BF00306118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00306118

Key words

Navigation