, Volume 25, Issue 3, pp 247–255 | Cite as

A histochemical study of liver enzymes involved in glycogen metabolism in the X-irradiated rat

  • G. N. Catravas
  • C. G. McHale


The liver enzymes responsible for the breakdown and synthesis of glycogen from glucose have been investigated cytochemically in rats exposed to 1200 rads of x-irradiation. It was found that significant changes occur in their activities and that amylophosphorylase and amylo-1,6-glucosidase (debranching enzyme), both of which are responsible for the conversion of glycogen to glucose, are markedly inhibited by radiation. A significant inhibition of the activity of 1,4→1,6 transglucosidase (branching enzyme) was also observed. In contrast, the activity of UDPG-glycogen transglucosylase, which is responsible for the in vivo synthesis of 1,4-polysaccharides, was found to be stimulated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Catravas, G. N., McHale, C. G.: Activity of rat liver enzymes responsible for glycogen metabolism after whole-body irradiation. In preparation.Google Scholar
  2. Cori, C. F., Schmidt, G., Cori, G. T.: Synthesis of a polysaccharide from glucose-1-phosphate in muscle extract. Science 89, 464 (1939).Google Scholar
  3. Cori, G. T.: Amylo-1,6-glucosidase. In: Methods in enzymology, ed. by Colowick, S. P. and Kaplan, N. O., vol. I, p. 211–214, New York: Acad. Press 1955.Google Scholar
  4. —, Larner, J.: Action of amylo-1,6-glucosidase and phosphorylase on glycogen and amylopectin. J. biol. Chem. 188, 17–29 (1951).Google Scholar
  5. Exton, J. H., Park, C. R.: Stimulation of gluconeogenesis from lactate by epinephrine, glucagon and cyclic-3′,5′-adenylate in the perfused rat liver. Pharmacol. Rev. 18, 181–188 (1966).Google Scholar
  6. Grillo, T. A. I.: A histochemical study of phosphorylase in the tissue of chick embryo. J. Histochem. Cytochem. 9, 386–391 (1961).Google Scholar
  7. Gubin, G. D.: Histochemical studies of ionizing radiation effects on nucleic acids and glycogen dynamics in rat livers. Radiobiologiya 2, 553–557 (1962).Google Scholar
  8. Hansen, L.: The increase in liver glycogen in non-fasted rats after irradiation. A comparison with pair-fed animals. Intern. J. Radiat. Biol. 12, 367–372 (1967).Google Scholar
  9. Illingworth, B., Brown, D. H., Cori, C. F.: The mechanism of the de novo synthesis of polysaccharide by phosphorylase. Proc. nat. Acad. Sci. (Wash.) 47, 479–485 (1961).Google Scholar
  10. Kay, R. E., Entenman, C.: Hyperglycemia and increased liver glycogen in rats after x-irradiation. Proc. Soc. exp. Biol. (N.Y.) 91, 143–146 (1956).Google Scholar
  11. Krebs, E. G., Fischer, E. H.: Phosphorylase activity of skeletal muscle extracts. J. biol. Chem. 216, 113–120 (1955).Google Scholar
  12. Leloir, L. F., Gardini, C. E.: Biosynthesis of glycogen from uridine diphosphate glucose. J. Amer. chem. Soc. 79, 6340–6341 (1957).Google Scholar
  13. Mehrotra, R. M. C., Agarwal, S. R.: Histological and biochemical changes following x-irradiation of exposed livers. J. Path. Bact. 91, 207–213 (1966).Google Scholar
  14. Miquel, J., Lundgren, P. R., Jenkins, J. O.: Effects of Roentgen radiation on glycogen metabolism of the rat brain. Acta radiol. Ther. Phys. Biol. 5, 123–132 (1966).Google Scholar
  15. Palade, G. E.: A study of fixation for electron microscopy. J. exp. Med. 95, 285–298 (1952).Google Scholar
  16. Rall, T. W., Sutherland, E. W., Berthet, J.: Effect of adrenaline and glucagon on the reactivation of phosphorylase in liver homogenates. J. biol. Chem. 224, 463–475 (1957).Google Scholar
  17. Sjöstrand, F. S.: A new ultrastructural element of membranes in mitochondria and of some cytoplasmic membranes. J. Ultrastruct. Res. 9, 340–361 (1963).Google Scholar
  18. Spurlock, B. O., Kattine, V. C., Freeman, J. A.: Technical modifications in Maraglas embedding. J. Cell Biol. 17, 203–207 (1963).Google Scholar
  19. Streffer, C.: Untersuchungen über den Energiestoffwechsel im Lebergewebe der Maus nach Ganzkörperbestrahlung. Intern. J. Radiat. Biol. 11, 179–191 (1966).Google Scholar
  20. Sutherland, E. W., Rall, T. W.: The relation of adenosine-3′,5′-phosphate and phosphorylase to the action of catecholamines and other hormones. Pharmacol. Rev. 18, 265–299 (1960).Google Scholar
  21. Takeuchi, T.: Histochemical demonstration of branching enzyme (amylo-1,4→1,6-transglucosidase) in animal tissues. J. Histochem. Cytochem. 6, 208–216 (1958).Google Scholar
  22. —: Takeuchi method for amylophosphorylase (phosphorylase) and amylo-1,4→1,6-transglucosidase (branching enzyme). In: Selected histochemical and histopathological methods, ed. by S. W. Thompson, p. 678–681. Springfield, Ill.: C. C. Thomas Publishing Co 1966.Google Scholar
  23. —, Glenner, G. G.: Histochemical demonstration of uridine diphosphate glucose-glycogen transferase in animal tissues. J. Histochem. Cytochem. 9, 304–316 (1961).Google Scholar
  24. Takeuchi, T., Kuriaki, H.: Histochemical demonstration of phosphorylase in animal tissues. J. Histochem. Cytochem. 3, 153–160 (1955).Google Scholar
  25. Venable, J. H., Coggeshall, R.: A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25, 407–408 (1965).Google Scholar
  26. Verhue, W., Hers, H. G.: The reaction catalyzed by the liver branching enzyme. Biochem. J. 99, 222–227 (1966).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • G. N. Catravas
    • 1
  • C. G. McHale
    • 1
  1. 1.Armed Forces Radiobiology Research Institute, Defense Atomic Support AgencyBethesdaUSA

Personalised recommendations