Advertisement

Cell and Tissue Research

, Volume 278, Issue 1, pp 125–134 | Cite as

Structure of the visual system of the larva of the tiger beetle (Cicindela chinensis)

  • Yoshihiro Toh
  • Akiko Mizutani
Article
  • 109 Downloads

Abstract

The visual system of the larval tiger beetle (Cicindela chinensis) consists of six (two large, two mediumsized, and two small) stemmata on either side of the head, and an underlying neuropil mass. Each stemma exhibits a corneal lens and an underlying rhabdom layer. Retinular cells extend single proximal axons into the neuropil mass. The neuropil mass has a flattened heart-shape, and consists of two juxtaposed identical structures, each being a neuropil complex of each of the two large stemmata. The complex consists of lamina and medulla neuropils. Most retinular axons terminate in the lamina neuropil. Axons of two types of lamina monopolar neurons descend parallel to each other into the lamina neuropil. Moreover, each lamina neuropil contains a single giant monopolar neuron. Possible centrifugal processes and tangential neurons also occur. Lamina monopolar axons descend straight into the medulla neuropil. Medulla neurons spread fan-shaped dendrites distally in the medulla neuropil and send single axons toward the protocerebrum. These data are discussed with respecct to the unique visual behavior of this larva and in comparison with other insect visual systems.

Key words

Ocellus Stemmata Photoreceptor cells Optic ganglia Neuropil Cicindela chinensis (Insecta) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bähr RR (1971) Die Ultrastruktur der Photorezeptoren von Lithobius forficatus L. (Chilopoda, Lithobiidae). Z Zellforsch 116:70–93Google Scholar
  2. Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) The neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 79–102Google Scholar
  3. Brandt H (1937) Untersuchungen über die Änderung der photound geotaktischen Reaktionen der Nonnenraupe Lymantria monacha L. im Verlaufe des Raupenlebens. Z Vergl Physiol 24:188–197Google Scholar
  4. Eckert H (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J Comp Physiol 143:511–526Google Scholar
  5. Eckert H (1982) The vertical-horizontal neurone (VH) in the lobula plate of the blowfly, Phaenicia. J Comp Physiol 143:195–205Google Scholar
  6. Eckert H, Bishop LG (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata (Diptera, Calliphoridae). J Comp Physiol 126:57–86Google Scholar
  7. Friederichs H (1931) Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindelinen (Col.). Z Morph Oecol Tiere 21:1–172Google Scholar
  8. Gilbert C (1989) Visual determinants of escape in tiger beetle larvae (Cicindelidae). J Insect Behav 2:557–574Google Scholar
  9. Götz B (1936) Beiträge zur Analyse des Verhaltens von Schmetterlingsraupen beim Aufsuchen des Futters und des Verpuppungsplatzes. Z Vergl Physiol 23:429–503Google Scholar
  10. Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, BerlinGoogle Scholar
  11. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. 1. The horizontal cells: structure and signals. Biol Cybern 45:143–156Google Scholar
  12. Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. 2. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79Google Scholar
  13. Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol 149:179–193Google Scholar
  14. Hori M (1982) The biology and population dynamics of the tiger beetle, Cicindela japonica (Thunberg). Physiol Ecol Jpn 19:77–212Google Scholar
  15. Hundertmark A (1937a) Helligkeits-und Farbenunterscheidungs vermögen der Eiraupen der Nonne (Lymantria monacha L.). Z Vergl Physiol 24:42–57Google Scholar
  16. Hundertmark A (1937b) Das Formenunterscheidungsvermögen der Eiraupen der Nonne (Lymantria monacha L.). Z Vergl Physiol 24:563–582Google Scholar
  17. Lammert A (1925) Über Pigmentwanderung im Punktauge der Insekten, sowie über Licht-und Schwerkraftreaktionen von Schmetterlingsraupen. Z Vergl Physiol 3:225–278Google Scholar
  18. Ludwig W (1933) Seitenstetigkeit niederer Tiere im Ein-und Zweilichtversuche. I. Limantria dispar-Raupen. Z Wiss Zool 144:469–495Google Scholar
  19. Ludwig W (1934) Seitenstetigkeit niederer Tiere im Ein-und Zweilichterversuche. II. Menotaxis. Z Wiss Zool 146:193–235Google Scholar
  20. Meyer-Rochow VB (1974) The structure and function of the larval eye of the sawfly Perga. J Insect Physiol 20:1565–1591Google Scholar
  21. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Strausfeld NJ, Barth FG (1993) Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. J Comp Neurol 328:43–62Google Scholar
  23. Strausfeld NJ, Welzien P, Barth FG (1993) Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol 328:63–75Google Scholar
  24. Toh Y, Iwasaki M (1982) Ocellar system of the swallowtail butterfly larva. II. Projection of retinular axons in the brain. J Ultrastruct Res 78:120–135Google Scholar
  25. Toh Y, Mizutani A (1994) Neural organization of the lamina neuropil of the larva of the tiger beetle (Cicindela chinensis). Cell Tissue Res 278:135–144Google Scholar
  26. Uehara A, Toh Y, Tateda H (1977) Fine structure of the eyes of orb-weavers, Argiope amoena L. Koch (Aranea: Argiopidae). 1. The anteromedial eyes. Cell Tissue Res 182:81–91Google Scholar
  27. Wilde J, Pet J (1957) The optical component in the orientation of the Colorado beetle larva (Leptinotarsa decemlineata Say.). Acta Physiol Pharmacol Neerl 6:715–726Google Scholar
  28. Yamamoto K, Toh Y (1975) The fine structure of the lateral ocellus of the dobsonfly larva. J Morphol 146:415–430Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Yoshihiro Toh
    • 1
  • Akiko Mizutani
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations