Skip to main content
Log in

Cerebellar capillaries

Qualitative and quantitative observations in young and senile rats

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Ultrastructural changes including reduced electron density, reduction in polysomes and cisternae of rough endoplasmic reticulum occur in the cytoplasm of endothelial cells and pericytes in the cerebellar cortex of senile virgin female Han: WIST-rats in comparison to 3-month old virgin rats. Processes of pericytes cover less of the capillary surface in the cerebellar cortex of senile rats; moreover, arithmetic and harmonic mean thickness of the endothelium and relative volume of mitochondria in endothelial cells and pericytes are reduced, whereas the luminal diameter of the capillaries, harmonic and arithmetic mean thickness of pericytes and their processes and of the basal laminae between endothelial cells and astrocytes (abbreviated BAL 1), pericytes and astrocytes (BAL 2) and endothelial cells and pericytes (BAL 3) increase. The increase in harmonic mean thickness of the basal laminae is statistically significant (α≦0.05) and compensates for a decrease in thickness of capillary endothelium. Consequently, the total barrier mass and thickness of cerebellar cortical capillaries in senile animals is higher than in young individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew W (1936) The Nissl substance of the Purkinje cell in the mouse and rat from birth to senility. Z Zellforsch mikrosk Anat 25:583–604

    Google Scholar 

  • Andrew W (1939) The Golgi apparatus in the nerve cells of the mouse from youth to senility. Am J Anat 64:351–376

    Google Scholar 

  • Andrew W (1941) Cytological changes in senility in the trigeminal ganglion, spinal cord and brain of the mouse. J Anat (London) 75:406–419

    Google Scholar 

  • Andrew W (1955) Amitotic division in senile tissues as a probable means of self-preservation of cells. J Gerontol 10:1–12

    Google Scholar 

  • Andrew W (1956) Structural alterations with aging in the nervous system. In: Moore JE, Merritt HH, Masselink RJ (eds) The neurologic and psychiatric aspects of the disorders of aging. Williams and Wilkins, Baltimore, pp 129–170

    Google Scholar 

  • Bär T (1978) Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: Changes during development and aging. In: Cervós-Navarro J et al (eds) Advances in neurology Vol 20. Raven Press, New York, pp 1–9

    Google Scholar 

  • Bär T, Strauch L (1979) Messungen der Kapillarwanddicke im Cerebralcortex alternder Ratten. Verh Anat Ges 73:1069–1073

    Google Scholar 

  • Bell MA, Ball MJ (1981) Morphometric comparison of hippocampal microvasculature in ageing and demented people: diameters and densities. Acta Neuropathol (Berl) 53:299–318

    Google Scholar 

  • Bennett HS, Luft JH, Hampton JC (1959) Morphological classifications of vertebrate blood capillaries. Am J Physiol 196:381–390

    Google Scholar 

  • Blumenthal HT (1976) Immunological aspects of the aging brain. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 313–334

    Google Scholar 

  • Bradbury M (1979) The concept of a blood-brain barrier. Wiley, New York

    Google Scholar 

  • Brendel K, Meezan E (1980) Vascular basement membranes: preparation and properties of material isolated with the use of detergents. In: Eisenberg HM, Suddith RL (eds) The cerebral microvasculature. Plenum Press, New York, pp 89–103

    Google Scholar 

  • Burns EM, Kruckeberg TW, Comerford LE, Buschmann MBT (1979) Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J Gerontol 34:642–650

    Google Scholar 

  • Burns EM, Kruckeberg TW, Gaetano PK (1981) Changes with age in cerebral capillary morphology. Neurobiol Aging 2:285–291

    Google Scholar 

  • Cammermeyer J (1963) Cytological manifestations of aging in rabbit and chinchilla brains. J Gerontol 18:41–53

    Google Scholar 

  • Conradi NG, Eins S, Wolff J-R (1979) Postnatal vascular growth in the cerebellar cortex of normal and protein-deprived rats. Acta Neuropathol 47:131–137

    Google Scholar 

  • Corsellis JAN (1976) Some observations on the Purkinje cell population and on brain volume in human aging. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 205–209

    Google Scholar 

  • Cruz-Orive LM (1983) Distribution-free estimation of sphere size distributions from slabs showing overprojection and truncation, with a review of previous methods. J Microsc (in press)

  • Delorenzi E (1932) Costanza numerica delle cellule di Purkinje del cervelletto dell'uomo di varia eta. Z Zellforsch 14:310–316

    Google Scholar 

  • Dolley DH (1911) Studies on the recuperation of nerve cells after functional activity from youth to senility. J Med Res 24:309–347

    Google Scholar 

  • Eisenberg HM, Suddith RL, Crawford JS (1980) Transport of sodium and potassium across the blood-brain barrier. In: Eisenberg HM, Suddith RL (eds) The cerebral microvasculature. Academic Press, New York, pp 57–67

    Google Scholar 

  • Ellis RS (1919) A preliminary quantitative study of the Purkinje cells in normal, subnormal, and senescent human cerebella, with some notes on functional localization. J Comp Neurol 30:229–252

    Google Scholar 

  • Ellis RS (1920) Norms for some structural changes in the human cerebellum from birth to old age. J Comp Neurol 32:1–33

    Google Scholar 

  • Fang HC (1976) Observations on aging characteristics of cerebral blood vessels, macroscopic and microscopic features. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 155–166

    Google Scholar 

  • Farquhar MG (1978) Structure and function in glomerular capillaries. In: Kefalides NA (ed) Biology and chemistry of basement membranes. Academic Press, New York, pp 43–80

    Google Scholar 

  • Firth JA (1977) Cytochemical localization of the K+ regulation interface between blood and brain. Experientia 33:1093–1094

    Google Scholar 

  • Fujisawa K, Nakamura A (1982) The human Purkinje cells. A Golgi study in pathology. Acta Neuropathol 56:255–264

    Google Scholar 

  • Gjedde A (1981) Regulation and adaptation of substrate transport to brain. In: Kovách AGB, Hamar J, Szabó L (eds) Cardiovascular physiology. Microcirculation and capillary exchanges. Adv Physiol Sci 7. Pergamon Press, New York, pp 307–315

    Google Scholar 

  • Glick R, Bondareff W (1979) Loss of synapses in the cerebellar cortex of the senescent rat. J Gerontol 34:818–822

    Google Scholar 

  • Godeau G, Robert AM (1979) Mechanism of action of collagenase on the blood-brain barrier permeability. Increase of endothelial cell pinocytotic activity as shown with horse-radish peroxidase as a tracer. Cell Biol Int Rep 3:747–752

    Google Scholar 

  • Gundersen JJG, Jensen TB, Østerby R (1978) Distribution of membrane thickness determined by lineal analysis. J Microsc 113:27–44

    Google Scholar 

  • Hall DA (1976) The aging of connective tissues. Academic Press, New York

    Google Scholar 

  • Hall TC, Miller AKH, Corsellis JAN (1975) Variations in the human Purkinje cell population according to age and sex. Neuropath Appl Neurobiol 1:267–292

    Google Scholar 

  • Hammersen F (1977) Bau und Funktion der Blutkapillaren. In: Handbuch der allgemeinen Pathologie. Vol III/7. Mikrozirkulation. Springer, Berlin Heidelberg New York, pp 135–229

    Google Scholar 

  • Harms JW (1927) Alterserscheinungen in Hirn von Affen und Menschen. Zool Anz (Leipzig) 74:249–256

    Google Scholar 

  • Hassler O (1965) Vascular changes in senile brains. Acta Neuropathol 5:40–53

    Google Scholar 

  • Heinsen H (1978) Postnatal quantitative changes in the cerebellar uvula of albino rats. Anat Embryol 154:285–304

    Google Scholar 

  • Heinsen H (1979) Lipofuscin in the cerebellar cortex of albino rats: an electron microscopic study. Anat Embryol 155:333–345

    Google Scholar 

  • Heinsen H (1981) Regional differences in the distribution of lipofuscin in Purkinje cell perikarya. Anat Embryol 161:453–464

    Google Scholar 

  • Hinds JW, McNelly NA (1978) Dispersion of cisternae of rough endoplasmic reticulum in aging CNS neurons: a strictly linear trend. Am J Anat 152:433–440

    Google Scholar 

  • Hinds JW, McNelly NA (1982) Capillaries in aging rat olfactory bulb: a quantitative light and electron microscopic analysis. Neurobiol Aging 3:197–207

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  • Hunziker O, Frey H, Schulz U (1974) Morphometric investigations of capillaries in the brain cortex of the cat. Brain Res 65:1–11

    Google Scholar 

  • Hunziker O, Abdel'Al S, Frey H, Veteau MJ, Meier-Ruge W (1978) Quantitative studies in the cerebral cortex of aging humans. Gerontology 24:27–31

    Google Scholar 

  • Hunziker O, Abdel'Al S, Schulz U (1979) The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J Gerontol 34:345–350

    Google Scholar 

  • Inukai T (1928) On the loss of the Purkinje cells with advancing age, from the cerebellar cortex of the albino rat. J Comp Neurol 45:1–28

    Google Scholar 

  • Jensen EB, Gundersen HJG, Østerby R (1979) Determination of membrane thickness distribution from orthogonal intercepts. J Microsc 115:19–33

    Google Scholar 

  • Karscú S, Jancsó G, Tóth L (1977) Butyrylcholinesterase activity in fenestrated capillaries of the rat area postrema. Brain Res 120:146–150

    Google Scholar 

  • Ketz HA (1959) Die Altersveränderungen im Zentralnervensystem der Haustiere. Z Alternsforsch (Dresden) 13:199–236

    Google Scholar 

  • Knox CA, Oliveira A (1980) Brain aging in normotensive and hypertensive strains of rats. III. A quantitative study of cerebrovasculature. Acta Neuropathol 52:17–25

    Google Scholar 

  • Lange W, Halata Z (1979) Comparative studies on the pre-and postterminal blood vessels in the cerebellar cortex of rhesus monkey, cat, and rat. Anat Embyrol 158:51–62

    Google Scholar 

  • Larsell O (1952) The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol 97:281–356

    Google Scholar 

  • Laursen H (1980) The mitochondrial content of endothelial cells and the basement membrane thickness of rat brain capillaries after portocaval anastomosis. Neuropathol Appl Neurobiol 6:375–386

    Google Scholar 

  • Lübbers DW (1977) Exchange processes in the microcirculatory bed. In: Meesen H (ed) Mikrozirkulation. Handbuch der allgemeinen Pathologie. Bd III/7. Springer, Heidelberg New York, pp 411–476

    Google Scholar 

  • Martinez-Hernandez A (1978) The basement membrane pores. In: Kefalides NA (ed) Biology and chemistry of basement membranes. Academic Press, New York, pp 99–109

    Google Scholar 

  • Mehraein P, Yamada M, Tarnowska-Dziduszko E (1975) Quantitative studies on dendrites in Alzheimer's disease and senile dementia. In: Kreutzberg GW (ed) Physiology and pathology of dentrites. Vol 12 Raven Press, New York, pp 455–456

    Google Scholar 

  • Nandy K (1982) Neuroimmunology and the aging brain. Exp Brain Res Suppl 5:123–126

    Google Scholar 

  • Nosal G (1979) Neuronal involution during aging. Ultrastructural study in the rat cerebellum. Mech Age Dev 10:295–314

    Google Scholar 

  • Oldendorf WH (1981) Speculations on functions of the blood-brain barrier. In: Kovách AGB, Hamar J, Szabó L (eds) Cardiovascular physiology. Microcirculation and capillary exchange. Adv Physiol Sci Vol 7. Pergamon Press, Oxford, pp 349–353

    Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1976). The large apparent metabolic work capacity of the blood-brain barrier. Arch Neurol 33:390

    Google Scholar 

  • Oldendorf WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Poliwoda H, Schmidt-Matthiesen H, Staubesand J (1965) Pathogenesis and therapy of increased vascular fragility. Bibl Anat 7:235–241

    Google Scholar 

  • Rapoport SI, London ED, Takei H (1982) Brain metabolism and blood flow during development and aging of the Fischer-344 rat. In: Hoyer S (ed) The aging brain. Springer, Berlin Heidelberg, pp 86–101

    Google Scholar 

  • Ravens JR (1976) Vascular changes in the human senile brain. Adv Neurol 20:487–501

    Google Scholar 

  • Reece TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exgenous peroxidase. J Cell Biol 34:207–217

    Google Scholar 

  • Renkin EM (1977) Multiple pathways of capillary permeability. Cire Res 41:735–743

    Google Scholar 

  • Robert AM, Miskulin M, Moati F, Godeau G (1978) Role of the basement membrane collagen in the blood-brain barrier permeability. In: Kefalides NA (ed) Biology and chemistry of basement membranes. Academic Press, New York, pp 195–203

    Google Scholar 

  • Rogers J, Silver MA, Shoemaker WJ, Bloom FE (1980) Senescent changes in a neurobiological model system — cerebellar Purkinje cell electro-physiology and correlative anatomy. Neurobiol Aging 1:3–12

    Google Scholar 

  • Smith CB, Sokoloff L (1982) Age-related changes in local glucose utilization in the brain. In: Hoyer S (ed) The aging brain. Springer, Berlin Heidelberg, pp 76–85

    Google Scholar 

  • Sosula L, Beaumont P, Jonson KM, Hollows FC (1972) Quantitative ultrastructure of capillaries in the rat retina. Invest Ophthal 11:916–925

    Google Scholar 

  • Spiegel A (1928) Uber die degenerativen Veränderungen in der Kleinhirnrinde im Verlauf des Individualzyklus vom Cavia cobaya Maregr. Zool Anz (Leipzig) 79:173–183

    Google Scholar 

  • Van Deurs B (1976) Observations on the blood-brain barrier in hypertensive rats, with particular reference to phagocytic pericytes. J Ultrastr Res 56:65–77

    Google Scholar 

  • Verzár F (1965) Experimentelle Gerontologie. Enke, Stuttgart

    Google Scholar 

  • Vracko R (1970) Skeletal muscle capillaries in non-diabetics: a quantitative analysis. Circulation 41:285–297

    Google Scholar 

  • Wagner RC, Casley-Smith J (1981) Endothelial vesicles. Microvasc Res 21:267–298

    Google Scholar 

  • Weber E (1980) Grundriß der biologischen Statistik. Anwendungen der mathematischen Statistik in Forschung, Lehre und Praxis. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Weibel ER (1970/71) Morphometric estimation of pulmonary diffusing capacity. Model and method. Resp Physiol 11:54–75

    Google Scholar 

  • Weibei ER (1979) Stereological methods Vol 1. Academic Press, London New York Toronto Sydney San Francisco

    Google Scholar 

  • Weibel ER, Knight BW (1964) A morphometric study of the thickness of the pulmonary air-blood barrier. J Cell Biol 21:367–384

    Google Scholar 

  • Weiss HR, Buchweitz E, Murtha TJ, Auletta M (1982) Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ Res 51:494–503

    Google Scholar 

  • Werner L (1967) Probleme quantitativer lebensgeschichtlicher Untersuchungen der Kapillardichte in Rattengehirnen. Z mikr-anat Forsch 78:272–288

    Google Scholar 

  • Westergaard E, van Deurs B, Brøndsted HE (1977) Increased vesicular transfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropathol (Berl) 37:141–152

    Google Scholar 

  • Wilcox HH (1959) Structural changes in the nervous system related to the process of aging. In: Thomas CC (ed) The process of aging in the nervous system. Springfield/Ill, pp 16–23

  • Zs-Nagy V, Bertoni-Freddari C, Zs-Nagy I, Pieri C, Giuli C (1977) Alterations in the numerical density of perichromatin granules in different tissues during ageing and cell differentiation. Gerontology 23:267–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Kwee Boen Swan, Surabaya (Indonesia)

Supported by a grant from the “Deutsche Forschungsgemeinschaft” (La 184/7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinsen, H., Heinsen, Y.L. Cerebellar capillaries. Anat Embryol 168, 101–116 (1983). https://doi.org/10.1007/BF00305402

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305402

Key words

Navigation