Skip to main content
Log in

Phase-conjugate bistability and multistability in moving-grating operated orthogonally polarized pump four-wave mixing in photorefractives

  • Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We establish possible regions of bistability (BIST), multistability (MUST), hysteresis, self-oscillation (SO) and enhancement features of the phase-conjugate reflectivity (PCR) by use of moving-grating operation (MGO) in the orthogonally polarized pump four-wave mixing (OPP-FWM) geometry employing a photorefractive (PR) crystal (usually BaTiO3). Numerical evaluation of such PCR features has been presented as a function of parameters such as coupling strength (of complex gL and real g 0 L values), frequency-shift (Ω) owing to grating motion, the PR phase shift (øPR), and pump (r) and probe (q) intensity ratios. PCR results of this geometry are compared with those obtained from the regular (i.e. parallel-polarized pump) four-wave mixing (REG-FWM) geometry assuming the same set of parameters in both geometries. We find that the OPP geometry leads to a drastic PCR enhancement together with the appearance of a rich variety of multibranched solutions exhibiting BIST and MUST features of the PCR, particularly in the range 0.5 ≲ Ω ≲ 3 with values g 0L ∼ 10, r=1 and q ≲ 0.1 that are practically realizable. Nevertheless, this geometry sometimes offers the possibility of a PCR jump (from one stable state to the other), suggesting hysteresis caused by changing Ω only slightly. In the REG geometry, however, the PCR enhancement is less prominent, and also the BIST/MUST features rarely exist unless g 0 L becomes sufficiently large, say ∼ 20 or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cronin-Golomb, B. Fischer, J. O. White and A. Yariv, IEEE J. Quantum Electron. QE-20 (1984) 12.

    Google Scholar 

  2. B. Fischer, S. Sternklar and S. Weiss IEEE J. Quantum Electron. QE-25 (1989) 550.

    Google Scholar 

  3. P. Gunter and J. P. Huignard, editors Photorefractive Materials and Their Applications-II (Berlin, Springer 1989) p. 101.

    Google Scholar 

  4. S. I. Stepanov and M. P. Petrov, Opt. Commun. 53 (1985) 64.

    Google Scholar 

  5. H. Kong, C. Lin, A. M. Biernacki and M. Cronin-Golomb, Opt. Lett. 13 (1988) 324.

    Google Scholar 

  6. B. Fischer and S. Weiss, Appl. Phys. Lett. 53 (1988) 257.

    Google Scholar 

  7. J. Goltz and T. Tschudi, Opt. Commun. 73 (1989) 195.

    Google Scholar 

  8. A. Erdmann, R. Kowarschik and L. Wenke, J. Opt. Soc. Am. B 6 (1989) 1845.

    Google Scholar 

  9. K. D. Shaw and M. Cronin-Golomb, Opt. Commun. 65 (1988) 301; also errata, Opt. Commun. 71 (1989) 393.

    Google Scholar 

  10. A. Bledowski and W. Krolikowski, IEEE J. Quantum Electron. QE-24 (1988) 652.

    Google Scholar 

  11. K. D. Shaw and M. Cronin-golomb, Opt. Commun. 76 (1990) 151.

    Google Scholar 

  12. S. K. Kwong and A. Yariv, Opt. Lett. 11 (1986) 377.

    Google Scholar 

  13. S. K. Kwong, M. Cronin-golomb and A. Yariv, IEEE J. Quantum Electron. QE-22 (1986) 1508.

    Google Scholar 

  14. A. Bledowski, W. Krolikowski and A. Kujawski, IEEE J. Quantum Electron. QE-22 (1986) 1547.

    Google Scholar 

  15. T. K. Das and K. Singh, Opt. Quantum Electron. 23 (1991) 411.

    Google Scholar 

  16. T. K. Das and G. C. Bhar, Opt. Quantum Electron. 25 (1993) 663.

    Google Scholar 

  17. R. Yalohm and A. Yariv, J. Opt. Soc. Am. B. 5 (1988) 1783.

    Google Scholar 

  18. H. Rajbenback and J. P. Huignard, Opt. Lett. 10 (1985) 137.

    Google Scholar 

  19. K. R. Macdonald and J. Feinberg, Phys. Rev. Lett. 55 (1985) 821.

    Google Scholar 

  20. T. K. Das and G. C. Bhar, J. Mod. Opt. 40 (1993) 1817.

    Google Scholar 

  21. E. V. Krishnamurthy and S. K. Sen, Numerical Computation in Science and Engineering (Affiliated East-West, New Delhi, 1986) Chap. 3.

    Google Scholar 

  22. M. McCall, Ph.D. thesis, University of London, 1987.

  23. S. Sternklar and B. Fischer, Opt. Lett. 21 (1987) 711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, T.K., Bhar, G.C. Phase-conjugate bistability and multistability in moving-grating operated orthogonally polarized pump four-wave mixing in photorefractives. Opt Quant Electron 26, 1019–1032 (1994). https://doi.org/10.1007/BF00305002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00305002

Keywords

Navigation