Skip to main content
Log in

Experimental measurement of impulse response and noise for an emission computed tomography system

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Experimental studies have been made of the impulse response and noise characteristics of a tomographic system using a gamma camera. Fourier transform, deconvolution and iterative methods have been used with a CDC 6600 computer to reconstruct images from data obtained for various experimental arrangements of sources in a cylindrical phantom. It is shown that with an appropriate attenuation correction the impulse response in the reconstruction is substantially constant, independent of the position of the source in the phantom and that the reconstruction technique used is of secondary importance.

The resolution obtained for the impulse response and the relative noise level throughout the “non image” part of the reconstructions is shown for different experimental situations.

The measured variance in the reconstruction of an extended uniform activity source was found to be somewhat below the theoretical value except at high count densities (above 1,000 counts per image element) where the limit of accuracy of the reconstruction is shown to be imposed by the variation in the camera sensitivity over the field of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bracewell, R.N., Riddle, A.C.: Inversion of fan beam scans in radioastronomy. Astrophys. J. 150, 427–434 (1967)

    Article  Google Scholar 

  • Brooks, R.A., Di Chiro, G.: Principles of computer assisted tomography (CAT) in radiographic and radioisotope imaging. Phys. Med. Biol. 21, 689–732 (1976)

    Article  CAS  PubMed  Google Scholar 

  • Budinger, R.F., Gullberg, G.T.: Three dimensional reconstruction in nuclear medicine imaging. IEEE Trans. Nucl. Sci. NS21(3), 2–20 (1974)

    Article  Google Scholar 

  • Budinger, T.F., Gullberg, G.T.: Three dimensional reconstruction of isotope distributions. Phys. Med. Biol. 19, 387–389 (1974a)

    Article  CAS  PubMed  Google Scholar 

  • Budinger, T.F., Derenzo, S.E., Gullberg, G.T., Greenberg, W.K., Huesman, R.H.: Medical radionuclide imaging, Vienna: IAEA 1977

    Google Scholar 

  • Crowther, R.A., Klug, A.: Three dimensional image reconstruction on an extended field—a fast stable algorithm. Nature (Lond.) 252, 490–492 (1974)

    Article  Google Scholar 

  • De Rosier, D.J., Klug, A.: Reconstruction of 3-dimensional structures from electron micrographs. Nature (Lond.) 217, 130–134 (1968)

    Article  Google Scholar 

  • Friedman, M.I., Beattie, J.W., Laughlin, J.S.: Cross-sectional absorption density reconstruction for treatment planning. Phys. Med. Biol. 19, 819–830 (1974)

    Article  CAS  PubMed  Google Scholar 

  • Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for 3D electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970)

    Article  CAS  PubMed  Google Scholar 

  • Gordon, R., Herman, G.T.: Three dimensional reconstruction from projections: a review of algorithms. Int. Rev. Cytol. 38, 111–155 (1974)

    Article  CAS  PubMed  Google Scholar 

  • Hounsfield, G.N.: Computerised transverse axial scanning tomography Part 1. Brit. J. Radiol. 46, 1016–1022 (1973)

    Article  CAS  PubMed  Google Scholar 

  • Huesman, R.H.: Analysis of statistical errors for transverse section reconstruction. Lawrence Berkeley Laboratory Report LBL 4279, Univ. Calif. 1975

  • Huesman, R.H.: The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys. Med. Biol. 22, 511–521 (1977)

    Article  CAS  PubMed  Google Scholar 

  • Keyes, W.I.: A practical approach to transverse section gamma ray imaging. Brit. J. Radiol. 49, 62–70 (1976)

    Article  CAS  PubMed  Google Scholar 

  • Klug, A., Crowther, R.A.: Three dimensional image reconstruction from the viewpoint of information theory. Nature (Lond.) 238, 435 (1972)

    Article  Google Scholar 

  • Ramachandran, G.N., Lakshminarayanan, A.V.: Three dimensional reconstruction from radiographs and electron micrographs: Application of convolutions instead of Fourier transforms. Proc. Nat. Acad. Sci. USA 68, 2236–2240 (1971)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepp, L.A., Logan, B.F.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. NS21, (3), 21–43 (1974)

    Article  Google Scholar 

  • Simons, H.A.B., Lonn, A.H.R., Cotrall, M.F.: Three dimensional image reconstruction from gamma-camera images. Proc. 4th Int. Conf. Med. Phys. Ottawa, Canada, I.O.P.M. 1976

  • Smith, P.R., Peters, T.M., Bates, R.H.T.: Image reconstruction from finite numbers of projections. J. Phys. A: Math. Nucl. Gen. 6, 361–382 (1973)

    Article  Google Scholar 

  • Tanaka, E., Iinuma, T.A.: Correction functions for optimizing the reconstructed image in transverse section scan. Phys. Med. Biol. 20, 789–798 (1975)

    Article  CAS  PubMed  Google Scholar 

  • Tothill, P.: Limitations of the use of the geometric mean to obtain depth independence in scanning and whole body counting. Phys. Med. Biol. 19, 382 (1974)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonn, A., Cottrall, M. & Simons, H. Experimental measurement of impulse response and noise for an emission computed tomography system. Eur J Nucl Med 4, 251–259 (1979). https://doi.org/10.1007/BF00304880

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304880

Keywords

Navigation