Advertisement

Anatomy and Embryology

, Volume 179, Issue 2, pp 173–179 | Cite as

The human pattern of gyrification in the cerebral cortex

  • Karl Zilles
  • Este Armstrong
  • Axel Schleicher
  • Hans-Joachim Kretschmann
Original Articles

Summary

The degree of cortical folding found in adult human brains has been analyzed using a gyrification index (GI). This parameter permits the description of a mean value for the whole brain, but also a local specific analysis of different brain regions. Correlation analyses of the GI with age, body weight, body length, brain weight and volume of the prosencephalon and the cortex show no significant results. GI values do not differ significantly between male and female brains, right and left hemispheres or right and left sides of the superior temporal plane. The GI shows maximal values over the prefrontal and the parieto-temporo-occipital association cortex. A comparison between the rostro-caudal GI patterns of human brains and those of prosimians and Old World monkeys shows the largest difference over the prefrontal cortex. The mean GI increases from prosimians to human brains with the highest values for non-human primates being in the pongid group.

Key words

Human cortex Gyrification Primates Evolution Morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong E, Zilles K, Schlaug G, Schleicher A (1986) Comparative aspects of the primate posterior cingulate cortex. J Comp Neurol 253:539–548Google Scholar
  2. Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, LeipzigGoogle Scholar
  3. Cunningham DJ (1890) On cerebral anatomy. Br Med J 2:277–283Google Scholar
  4. De Lacoste-Utamsing, Holloway RL (1982) Sexual dimorphism in the human corpus callosum. Science 216:1431–1432Google Scholar
  5. Elias H, Schwartz D (1969) Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166:1011–1013Google Scholar
  6. Elias H, Schwartz D (1971) Cerebral-cortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man. Z Säugetierkunde 36:147–163Google Scholar
  7. Falk D (1978) External neuroanatomy of Old World monkeys (Cercopithecoidea). Contrib Primatol 15:525–539Google Scholar
  8. Galaburda AM, Corsiglia J, Rosen GD, Sherman GF (in press) Planum temporale asymmetry: Reappraisal since Geschwind and Levitsky. NeuropsycholGoogle Scholar
  9. Geschwind N, Levitsky W (1968) Human brain: Left-right asymmetries in temporal speach regions. Science 161:167–168Google Scholar
  10. Heitmann KU (in preparation) Oberflächenrekonstruktion bei Gehirnen nach der Schnittserienmethode. Inaug-Diss, KölnGoogle Scholar
  11. Henneberg R (1910) Messung der Oberfläche der Großhirnrinde. J Psychol Neurol 17:144–158Google Scholar
  12. Kretschmann HJ, Vossius G (1968) Über die Nativmakrotomie, eine schnelle und genaue Methode zur Volumenbestimmung von Gehirn- und Rückenmarkszentren. J Hirnforsch 10:373–378Google Scholar
  13. Leboucq G (1929) Le rapport entre le poids et la surface de l'hémisphère cérébral chez l'homme et les signes. Acad Roy de Belgique, Classe des Sciences Memoi 9:3–56Google Scholar
  14. Paul F (1971) Biometrische Analyse der Volumina des Prosencephalon und der Großhirnrinde von 31 menschlichen, adulten Gehirnen. Z Anat Entwickl Gesch 133:325–368Google Scholar
  15. Prothero JW, Sundsten JW (1984) Folding of the cerebral cortex in mammals. A scaling model. Brain Behav Evol 24:152–167Google Scholar
  16. Radinsky LB (1968) A new approach to mammalian analysis illustrated by examples of prosimian primates. J Morphol 124:167–180Google Scholar
  17. Radinsky LB (1979) The Fossil Record of Primate Brain Evolution. Forty-ninth James Arthur Lecture on the Evolution of the Human Brain. Am Mus Nat Hist, New YorkGoogle Scholar
  18. Richman DP, Stewart RM, Hutchison JW, Caviness SV (1975) Mechanical model of brain convolutional development. Science 189:18–21Google Scholar
  19. Sanides F (1972) Representation in the cerebral cortex its areal lamination patterns. In: Bourne GH (ed) Structure and Function of Nervous Tissue, vol 5. Academic Press, New York, pp 329–453Google Scholar
  20. Spitzka EA (1907) Study of the brains of 6 eminent scientists and scholars belonging to the American Anthropometric Society, together with a description of the skull of Professor E D Cope. Trans Am Philos Soc 21:175–308Google Scholar
  21. Stephan H (1960) Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z Wiss Zool 164:143–172Google Scholar
  22. Stephan H (1961) Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. V. Die quantitative Zusammensetzung der Oberflächen des Allocortex. Acta Anat 44:12–59Google Scholar
  23. Wagner H (1984) Maßbestimmungen der Oberfläche des großen Gehirns. Inaug Diss, GöttingenGoogle Scholar
  24. Welker WI, Campos GB (1963) Physiological significance of sulci in somatosensory cerebral cortex in mammals of the family Procynidae. J Comp Neurol 120:19–36Google Scholar
  25. Wessely W (1970) Biometrische Analyse der Frischvolumina des Rhombencephalon, des Cerebellum und der Ventrikel von 31 menschlichen, adulten Gehirnen. J Hirnforsch 12:11–28Google Scholar
  26. Zilles K (1972) Biometrische Analyse der Frischvolumina verschiedener prosencephaler Hirnregionen von 78 menschlichen, adulten Gehirnen. Gegenbaurs Morph Jahrb 118:234–273Google Scholar
  27. Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate Brain Evolution: Methods and Concepts. Plenum, New York, pp 177–201Google Scholar
  28. Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524Google Scholar
  29. Zilles K, Armstrong E, Moser KH, Schleicher A, Stephan H (1988) Gyrification in the cerebral cortex of primates. Brain Behav EvolGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Karl Zilles
    • 1
  • Este Armstrong
    • 2
    • 3
  • Axel Schleicher
    • 1
  • Hans-Joachim Kretschmann
    • 4
  1. 1.Anatomisches Institut der Universität zu KölnKöln 41Federal Republic of Germany
  2. 2.Yakovlev CollectionAFIPWashington D.C.
  3. 3.Department of Anatomy, Uniformed ServicesUniversity of Health SciencesBethesda
  4. 4.Anatomisches Institut der Medizinischen Hochschule HannoverHannover 61Federal Republic of Germany

Personalised recommendations