Skip to main content

Advertisement

Log in

Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana

  • Published:
Polar Biology Aims and scope Submit manuscript

Summary

Published data on the oxygen consumption, nitrogen excretion, feeding, growth and moulting physiology of the Antarctic krill, Euphausia superba, are reviewed with particular reference to experimental methodology and the value of the data for the construction of an energy budget. It is concluded that the relationship between basal oxygen consumption (QO2, in ml h-1) and wet weight (W, in grams) can be described by the relationship QO2=0.0813 W0.88, that filtration rates in krill are high (but possibly reduced in dense swarms), and growth of adult krill in summer is about 2 mm per week. Using these data a preliminary energy budget has been constructed for adult krill at South Georgia in summer. This budget highlights the lack of data on the energetic costs of swimming and feeding in krill, and also the environmental and behavioural data necessary for the extrapolation of an individual energy budget to a swarm or whole population. This preliminary budget suggests a daily energy intake for male krill in summer of about 5% body weight per day. A minimal estimate of the cost of reproduction in female krill from the energy content of the ovary suggests that in a maturing female energy intake can be in excess of 6% body weight per day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antezana T, Ray K (1983) Feeding of Euphausia superba in a swarm north of Elephant Island. J Crust Biol

  • Antezana T, Ray K, Melo C (1982) Trophic behaviour of Euphausia superba Dana in laboratory conditions. Polar Biol 1:77–82

    Google Scholar 

  • Bamstedt U (1976) Studies on the deep, water pelagic community of Korsfjorden Western Norway. Sarsia 63:145–154

    Google Scholar 

  • Barkley E (1940) Nahrung und Filterapparat des Walkrebschens Euphausia superba Dana. Z Fisch 1:65–156

    Google Scholar 

  • Berkes F (1973) Production and comparative ecology of euphausiids in the Gulf of St. Lawrence. PhD Thesis, Marine Sciences Centre McGill University, 188 pp

  • Berkes F (1975) Some aspects of feeding mechanisms of euphausiid crustaceans. Crustaceana 29:266–270

    Google Scholar 

  • Biggs DC (1982) Zooplankton excretion and NH +4 cycling in near-surface waters of the Southern Ocean. 1. Ross Sea, austral summer 1977–1978. Polar Biol 1:55–67

    Google Scholar 

  • Boyd CM (1976) Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnol oceanogr 21:175–180

    Google Scholar 

  • Boyd CM, Heyraud M (1983) Feeding behaviour of krill. J Crust Biol

  • Bridges CR, Brand AR (1980) Oxygen consumption and oxygen-independence in marine crustaceans. Mar Ecol Prog Ser 2:133–141

    Google Scholar 

  • von Bröckel K (1981) The importance of nanoplankton within the pelagic Antarctic ecosystem. Kieler Meeresforsch 5:61–67

    Google Scholar 

  • Chekunova VI, Rynkova TI (1974) Energy requirements of the Antarctic crustacean Euphausia superba Dana. Oceanology 14:434–440

    Google Scholar 

  • Clarke A (1976) Some observations on krill (Euphausia superba Dana) maintained alive in the laboratory. Bull Br Antart Surv 43:111–118

    Google Scholar 

  • Clarke A (1977) Lipid class and fatty acid composition of Chorismus antarcticus (Pfeffer) (Crustacea: Decapoda) at South Georgia. J Exp Mar Biol Ecol 28:297–314

    Google Scholar 

  • Clarke A (1979) Lipid content and composition of the pink shrimp, Pandalus montagui (Leach) (Crustacea: Decapoda). J Exp Mar Biol Ecol 38:1–17

    Google Scholar 

  • Clarke A (1980a) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 14:77–92

    Google Scholar 

  • Clarke A (1980b) The biochemical composition of krill, Euphausia superba Dana, from South Georgia. J Exp Mar Biol Ecol 43:221–236

    Google Scholar 

  • Clarke A (1982) Lipid synthesis and reproduction in the polar shrimp Chorismus antarcticus. Mar Ecol Prog Ser 9:81–90

    Google Scholar 

  • Clarke A (1983a) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Ann Rev 21:341–453

    Google Scholar 

  • Clarke A (1983b) Lipid content and composition of Antarctic krill, Euphausia superba Dana. J Crust Biol

  • Denys CJ, McWhinnie MA (1982) Fecundity and ovarian cycles of the Antarctic krill Euphausia superba (Crustacea, Euphausiacea). Can J Zool 60:2414–2423

    Google Scholar 

  • Everson I (1977) The living resources of the Southern Ocean. Rome FAO United Nations Development Programme, Southern Ocean Fisheries Survey Programme GLO/SO/77/1:156 pp

  • Everson I (1982) Diurnal variations in mean volume backscattering strength of an Antarctic krill (Euphausia superba) patch. J Plankt Res 4:155–162

    Google Scholar 

  • Fevolden SE, Ayala FJ (1981) Enzyme polymorphism in Antarctic krill (Euphausiacea); genetic variation between populations and species. Sarsia 66:167–181

    Google Scholar 

  • Gerritsen J, Porter KG (1982) The role of surface chemistry in filter feeding by zooplankton. Science 216:1225–1227

    Google Scholar 

  • Gulland JA (1970) The development of the resources of the Antarctic seas. In: Holdgate MW (ed) Antartic ecology, vol I. Academic Press, London, pp 217–223

    Google Scholar 

  • Hammen CS (1979) Metabolic rates of marine bivalve molluscs determined by calorimetry. Comp Biochem Physiol 62A:955–959

    Google Scholar 

  • Hammen CS (1980) Total energy metabolism of marine bivalve mollusks in anaerobic and aerobic states. Comp Biochem Physiol 67A:617–621

    Google Scholar 

  • Hamner WM (1983) Aspects of schooling in Euphausia superba. J Crust Biol

  • Hart TJ (1934) On the phytoplankton of the south, west Atlantic and the Bellingshausen Sea, 1929–31. Discovery Rep 8:1–268

    Google Scholar 

  • Hirche H-J (1983) Excretion and respiration of the Antarctic krill Euphausia superba. Polar Biol 1:205–209

    Google Scholar 

  • Holeton GF (1983) Respiration of arctic char (Salvelinus alpinus) from a high arctic lake. J Fish Res Bd Can 30:717–723

    Google Scholar 

  • Holeton GF (1974) Metabolic cold adaptation of polar fish: Fact or artefact? Physiol Zoöl 47:137–152

    Google Scholar 

  • Hustedt F (1958) Diatomeen aus der Antarktis und dem Südatlantik, Deutsche Antarktische Expedition 1938–39. Wiss Ergebn Dtsch Antarkt Exped 2:103–191

    Google Scholar 

  • Ikeda T (1970) Relationship between respiration rate and body size in marine plankton animals as a function of the temperature of habitat. Bull Fac Fish Hokkaido Univ 21:91–112

    Google Scholar 

  • Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ 22:1–97

    Google Scholar 

  • Ikeda T (1981) Metabolic activity of larval stages of Antarctic krill. Antarct J U S 16(5):161–162

    Google Scholar 

  • Ikeda T (1983) Sequences in metabolic rates and elemental composition (C, N, P) during the development of Euphausia superba Dana, and estimated food requirement during its life span. J Crust Biol

  • Ikeda T, Dixon P (1982) Observations on moulting in Antarctic krill (Euphausia superba Dana). Aust J Mar Freshw Res 33:71–76

    Google Scholar 

  • Ikeda T, Hing Fay E (1981) Metabolic activity of zooplankton from the Antarctic Ocean. Aust J Mar Freshw Res 32:921–930

    Google Scholar 

  • Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298

    Google Scholar 

  • Ivleva IV (1980) The dependence of crustacean respiration rate on body mass and habitat temperature. Int Rev Ges Hydrobiol 65:1–47

    Google Scholar 

  • Jørgensen CB (1966) Biology of suspension feeding. Pergamon Press, Oxford 357 pp

    Google Scholar 

  • Johnson MA, Macaulay MC, Biggs DC (1983) Epipelagic ammonium dynamics: Implications on krill patch distribution. J Crust Biol

  • Kato M, Segawa S, Tanoue E, Murano M (1982) Filtering and ingestion rates of the Antarctic krill, Euphausia superba Dana. Trans Tokyo Univ Fish 5:167–175

    Google Scholar 

  • Kils U (1979) Performance of Antarctic krill Euphausia superba at different levels of oxygen saturation. Meeresforsch 27:35–48

    Google Scholar 

  • Kils U (1981) Swimming behaviour, swimming performance and energy balance of Antarctic krill Euphausia superba. BIOMASS Sci Ser 3, 233 pp

  • Kils U (1982) The unique position of krill in the Antarctic system. Joint Oceanographic Assembly (Abstracts) Halifax, Nova Scotia

  • Lasker R (1966) Feeding, growth and carbon utilisation of a euphausiid crustacean. J Fish Res Bd Can 23:1291–1317

    Google Scholar 

  • Littlepage JL (1964) Seasonal variation in lipid content of two Antartic marine crustacea. In: Carrick R, Holdgate M, Prévost J (eds) Biologie antarcticque. Hermann, Paris, pp 463–470

    Google Scholar 

  • Luxmoore R (1981) The ecology of Antarctic serolid isopods. PhD Thesis, Council for National Academic Awards, 231 pp

  • Mackintosh NA (1967) Maintenance of living Euphausia superba and frequency of moults. Norsk Hvalfangsttid 56:97–102

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of Antarctic krill (Euphausia superba Dana). Discovery Rep 32:33–464

    Google Scholar 

  • Mauchline J (1980) The biology of mysids and euphausiids. Adv Mar Biol 18:1–681

    Google Scholar 

  • Mauchline J, Fisher LR (1969) The biology of euphausiids. Adv Mar Biol 7:1–454

    Google Scholar 

  • McClatchie S, Boyd CM (in press) A morphological study of sieve efficiences and mandibular surfaces in the Antarctic krill Euphausia superba. Can J Fish Aquat Sci

  • McWhinnie, MA, Marciniak P (1964) Temperature responses and tissue respiration in Antarctic crustacea with particular reference to the krill Euphausia superba. In: Lee MO (ed) Biology of the Antarctic seas. Antarct Res Ser 4:63–72

  • McWhinnie MA, Denys CJ, Parkin R, Parkin K (1979) Biological investigation of Euphausia superba (krill). Antarct J US 14:163–164

    Google Scholar 

  • Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol 1:193–197

    Google Scholar 

  • Mezykowski T (1979) Diurnal rhythms in metabolism of carbohydrate substrates in the Antarctic krill, Euphausia superba. Ekol Pol 27:497–519

    Google Scholar 

  • Mezykowski T, Rakusa-Suszcewski S (1979) The circadion rhythms in Euphausia superba Dana and its carbohydrate metabolism. Meeresforsch 27:127–129

    Google Scholar 

  • Morris DJ (1978) The respiratory physiology of the subtidal bivalves Glycymeris glycymeris, Anomia ephippium and Modiolus modiolus. PhD Thesis, University of Liverpool, 121 pp

  • Morris DJ (1983) Filtration rates in Euphausia superba: under or over estimates? J Crust Biol

  • Morris DJ, Keck A (in press) Preliminary studies of the time course of the moult cycle of Euphausia superba in the laboratory Meeresforsch

  • Morris DJ, Ricketts C (in preparation) Feeding of krill around South Georgia: A model of the feeding process in relation to depth and time of day

  • Morris DJ, Ward P, Clarke A (1983) Some aspects of feeding in the Antarctic krill Euphausia superba. Polar Biol 2:21–26

    Google Scholar 

  • Murano M, Segawa S, Kato M (1979) Moult and growth of the Antartic krill in laboratory. Trans Tokyo Univ Fish 3:99–106

    Google Scholar 

  • Nemoto T (1972) History of research into food and feeding of euphausiids. Proc R Soc Edinburgh, Sect B 73:259–265

    Google Scholar 

  • Nival P, Nival S (1976) Particle retention efficiencies of an herbivorous copepod. Acartia clausi (adult and copepodite stages): Effects on grazing. Limnol Oceanogr 21:24–38

    Google Scholar 

  • Parry GD (1978) Effects of growth and temperature acclimation on metabolic rate in the limpet, Cellana tranoserica (Gastropoda: Patellidae). J Anim Ecol 47:351–368

    Google Scholar 

  • Pavlov V Ya (1969) The feeding of krill and some features of its behaviour. Tr Vses Nauchno-Issled Inst Morsk Rybn Khoz Okeanogr 66:207–222

    Google Scholar 

  • Petrusewicz K, McFayden A (1970) Productivity of terrestrial animals. Principles and methods. IBP Handbook No 13. Blackwells Oxford, 190 pp

    Google Scholar 

  • Poleck TP, Denys CJ (1982) Effect of temperature on the molting, growth and maturation of the Antartic krill Euphausia superba (Crustacea: Euphausiacea) under laboratory conditions. Mar Biol 70:255–265

    Google Scholar 

  • Ponomoreva LA (1963) Evfauziidy severnoi poloviny Tikhogo okeana, ikh rasprostranenie i ekologiya massovykj vidov. Izdatelistvo Akademii Nauk SSSR, Moskva. (Translation: Euphausiids of the north Pacific, their distribution and ecology. Israel Program for Scientific Translations. Jerusalem, 1966, 154 pp)

    Google Scholar 

  • Ponomareva LA (1971) Circadian migrations and feeding rhythm of some Indian Ocean euphausiid species Oceanology 11:226–231

    Google Scholar 

  • Rakusa-Suszczewski S (1978) Environmental conditions within krill swarms. Pol Arch Hydrobiol 25:585–587

    Google Scholar 

  • Rakusa-Suszczewski S, Opalinski KW (1978) Oxygen consumption in Euphausia superba. Pol Arch Hydrobiol 25:633–641

    Google Scholar 

  • Roe HSJ, Shale DM (1979) A new multiple rectangular midwater trawl (RMT1+8M) and some modifications to the Institute of Oceanographic Sciences' RMT1+8. Mar Biol 50:283–288

    Google Scholar 

  • Roger C (1975) Rhythmes nutritionels et organisation trophique d'une population de crustaces pelagiques (Euphausiacea). Mar Biol 32:365–378

    Google Scholar 

  • Segawa S, Kato M, Muraro M (1979) Oxygen consumption of the Antarctic krill Euphausia superba. Trans Tokyo Univ Fish 3:113–120

    Google Scholar 

  • Segawa S, Kato M, Murano M (1982) Respiration and ammonia excretion rates of the Antarctic krill, Euphausia superba Dana. Trans Tokyo Univ Fish 5:177–187

    Google Scholar 

  • Shick JM (1981) Heat production and oxygen uptake in inteertidal sea anemones from different shore heights during exposure to air. Mar Biol Lett 2:225–236

    Google Scholar 

  • Small LF, Hebard JF, McIntire CD (1966) Respiration in euphausiids. Nature 211:1210–1211

    Google Scholar 

  • Taylor AC (1976) The respiratory responses of Carcinus maenas to declining oxygen tension. J Exp Biol 65:309–322

    Google Scholar 

  • Torres JJ, Childress JJ, Quetin LB (1982) A pressure vessel for the simultaneous determination of oxygen consumption and swimming speed in zooplankton Deep Sea Res 29:631–639

    Google Scholar 

  • Vanderploeg JA, Ondricek-Fallscheer RL (1982) Intersetule distances are a poor predictor of particle-retention efficiencies in Diaptomus sialis. J Plankt Res 4:237–244

    Google Scholar 

  • Vidal J, Whitledge TE (1982) Rates of metabolism of planktonic crustaceans as related to body weight and temperature of habitat. J Plankt Res 4:77–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was invited by Professor Sayed Z El-Sayed, and is in memory of Professor Mary Alice McWhinnie (1922–1980)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A., Morris, D.J. Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana. Polar Biol 2, 69–86 (1983). https://doi.org/10.1007/BF00303172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00303172

Keywords

Navigation