Advertisement

Journal of Automated Reasoning

, Volume 6, Issue 1, pp 1–38 | Cite as

Strategies for modal resolution: Results and problems

  • Yves Auffray
  • Jean-Jacques Hebrard
Article

Abstract

This paper is concerned with the definition of strategies for resolution in modal logic. We propose the following strategies: deletion of subsumed clauses, extensions of classical strategies based on a static constraint, negative resolution, input and linear resolution. A class of strategies based on static constraints and the linear strategy are proved to be complete. For input and negative strategy we have completeness results provided some restrictions on the class of considered clauses. Some problems such as completeness of deletion of subsumed clauses are left open; we state and discuss them in the paper.

Key words

Modal logic resolution strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M. and Manna, Z., ‘Non-clausal temporal deduction’, in Logics of Programs (R. Parikh, ed.), Springer-Verlag Lecture Notes in Computer Science 173, 1985, pp. 1–15.Google Scholar
  2. 2.
    Chang, C. and Lee, R., Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.Google Scholar
  3. 3.
    Cialdea, M., ‘Une méthode de déduction automatique en logique modale’, Thèse de l'Université P. Sabatier, Toulouse, 1986.Google Scholar
  4. 4.
    Enjalbert, P. and Farinas, L., ‘Modal resolution in clausal form’, to appear in Theor. Comput. Sci., 1989.Google Scholar
  5. 5.
    Farinas del Cerro, L., ‘Resolution modal logic, Logique et Analyse, no. 110, 111, 1985, pp. 152–172.Google Scholar
  6. 6.
    Farinas del Cerro, L., ‘Molog, a system that extends PROLOG with modal logic’, New Generation Computing, 4, 35–50 (1986).Google Scholar
  7. 7.
    Farinas del Cerro L. and Pentonen M., ‘A note on the complexity of satisfiability of modal Horn clauses’, J. of Logic Program, 4 (1), March 1987.Google Scholar
  8. 8.
    Hughes, G. E. and Cresswell, H. J., An Introduction to Modal Logic, Methuen, 1968.Google Scholar
  9. 9.
    Konolidge, K., ‘A resolution method for quantified modal logics of knowledge and belief’, Proc. 1986 Conference on Reasoning about Knowledge (J. Y. Halpern, ed.), pp. 309–324.Google Scholar
  10. 10.
    Loveland, D. W., Automated Theorem Proving: A Logical Basis, North Holland, 1978.Google Scholar
  11. 11.
    McCarthy, J. et al., On the Modal Theory of Knowledge, Memorandum AIM-312, Stanford University, 1978.Google Scholar
  12. 12.
    Okada, M., ‘Mathematical basis of modal logic programming’, Journées Européennes sur les méthodes Logiques en Intelligence Artificielle, Roscoff, France, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Yves Auffray
    • 1
  • Jean-Jacques Hebrard
    • 2
  1. 1.Avions Marcel DassaultSaint CloudFrance
  2. 2.Laboratoire d'InformatiqueUniversité de CaenCaen CedexFrance

Personalised recommendations