Skip to main content
Log in

Mutational analysis of centromeric DNA elements of Klayveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The centromere of Kluyveromyces lactis was delimited to a region of approximately 280 bp, encompassing KICDEI, II, and III. Removal of 6 bp from the right side of KlCDEIII plus flanking sequences abolished centromere function, and removal of 5 bp of KICDEI and flanking sequences resulted in strongly reduced centromere function. Deletions of 20–80 bp from KlCDEII resulted in a decrease in plasmid stability, indicating that KlCDEII must have a certain length for proper centromere function. Centromeres of K. lactis do not function in Saccharomyces cerevisiae and vice versa. Adapting the length of K1CDEII to that of ScCDEII did not improve KlCEN function in S. cerevisiae, while doubling the ScCDEII length did not improve ScCEN function in K. lactis. Thus the difference in CDEII length is not in itself responsible for the species specificity of the centromeres from each of the two species of budding yeast. A chimeric K. lactis centromere with ScCDEIII instead of KlCDEIII was no longer functional in K. lactis, but did improve plasmid stability in S. cerevisiae, although to a much lower level then a wild-type ScCEN. This indicates that the exact CDEIII sequence is important, and suggests that the flanking AT-rich CDEII has to conform to specific sequence requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: A high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. BioTechniques 5:376–380

    Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207

    Google Scholar 

  • Clarke L, Amstutz H, Fishel B, Carbon J (1986) Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 83:8253–8257

    Google Scholar 

  • Cottarel G, Shero JH, Hieter P, Hegemann JH (1989) A 125-basepair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere function in Saccharomyces cerevisiae. Mol Cell Biol 9:3342–3349

    Google Scholar 

  • Cumberledge S, Carbon J (1987) Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics 117:203–212

    Google Scholar 

  • Dower WJ (1988) Transformation of Escherichia coli to extremely high efficiency by electroporation. Mol Biol Rep 6:3–4

    Google Scholar 

  • Fitzgerald-Hayes M (1987) Yeast centromeres. Yeast 3:187–200

    Google Scholar 

  • Gaudet A, Fitzgerald-Hayes M (1987) Alterations in the adenine-plus-thymine rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol Cell Biol 7:68–75

    Google Scholar 

  • Grady DL, Ratliff RL, Robinson DL, Mccanlies EC, Meyne J, Moyzis RK (1992) Highly conserved repetitive DNA sequences are present at human centromeres. Proc Natl Acad Sci USA 89:1695–1699

    Google Scholar 

  • Hegemann JH, Pridmore RD, Schneider R, Philippsen P (1986) Mutations in the right boundary of Saccharomyces cerevisiae centromere 6 lead to nonfunctional or partially functional centromeres. Mol Gen Genet 205:305–311

    Google Scholar 

  • Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P (1988) Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8:2523–2535

    Google Scholar 

  • Hendriks L, Gods A, Vandepeer Y, Neefs JM, Vancanneyt M, Kersters K, Berny JF, Hennebert GL, Dewachter R (1992) Phylogenetic relationships among Ascomycetes and Ascomycetelike yeasts as deduced from small ribosomal subunit RNA sequences. Syst Appl Microbiol 15:98–104

    Google Scholar 

  • Hens JJ, Zonneveld BJM, Steensma HY, Van den Berg JA (1990) Centromeric DNA of Kluyveromyces lactis. Curr Genet 18:517–522

    Google Scholar 

  • Heus JJ, Zonneveld BJM, Steensma HY, Van den Berg JA (1993a) The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol Gen Genet 236:355–362

    Google Scholar 

  • Heus JJ, Bloom KS, Zonneveld BJM, Steensma HY, Van den Berg JA (1993b) Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae. Chromosoma 102:660–667

    Google Scholar 

  • Hieter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921

    Google Scholar 

  • Huberman JA, Pridmore RD, Jäger D, Zonneveld B, Philippsen P (1986) Centromeric DNA from Saccharomyces uvarum is functional in Saccharomyces cerevisiae. Chromosoma 94:162–168

    Google Scholar 

  • Jäger D (1990) Investigations and constructions with and on functional elements of Saccharomyces cerevisiae chromosomes. PhD Thesis, University of Giessen, Giessen, Germany

    Google Scholar 

  • Jehn B, Niedenthal R, Hegemann JH (1991) In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence — requirements for mitotic chromosome segregation. Mol Cell Biol 11:5212–5221

    Google Scholar 

  • Johnston HM, Davis RW (1984) Sequences that regulate the divergent GAL1-GAL10 promoter. Mol Cell Biol 4:1440–1448

    Google Scholar 

  • Kirkwood BR (1988) Medical statistics, Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Lechner J, Carbon J (1991) A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–725

    Google Scholar 

  • Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823

    Google Scholar 

  • Marsh JL, Erfle M, Wykes EJ (1984) The pIC plasmid and phage vectors. with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32:481–485

    Google Scholar 

  • McGrew J, Diehl B, Fitzgerald-Hayes M (1986) Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol 6:530–538

    Google Scholar 

  • Mitchell A, Jeppesen P, Hanratty D, Gosden J (1992) The organisation of repetitive DNA sequences on human chromosomes with respect to the kinetochore analysed using a combination of oligonucleotide primers and CREST anticentromere serum. Chromosoma 101:333–341

    Google Scholar 

  • Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J 5:1011–1021

    Google Scholar 

  • Niedenthal R, Stoll R, Hegemann JH (1991) In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1. Mol Cell Biol 11:3545–3553

    Google Scholar 

  • Panzeri L, Philippsen P (1982) Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains. EMBO J 1:1605–1611

    Google Scholar 

  • Panzeri L, Landonio L, Stotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4:1867–1874

    Google Scholar 

  • Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast — differentiation of the central core that correlates with function. J Cell Biol 112:191–201

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sherman F, Fink G, Lawrence C (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27

    Google Scholar 

  • Zonneveld BJM (1986) Cheap and simple yeast media. J Microbiol Methods 4:287–291

    Google Scholar 

  • Zweifel SG, Fangman WL (1990) Creation of ARS activity in yeast iteration of non-functional sequences. Yeast 6:179–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heus, J.J., Zonneveld, B.J.M., Steensma, H.Y. et al. Mutational analysis of centromeric DNA elements of Klayveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae . Molec. Gen. Genet. 243, 325–333 (1994). https://doi.org/10.1007/BF00301068

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301068

Key words

Navigation