Skip to main content
Log in

Initial enamel crystals are not spatially associated with mineralized dentine

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During epithelial-mesenchymal interactions associated with mammalian tooth development, epithelially-derived and mesenchymally-derived extracellular matrix molecules form a discrete dentine-enamel junction. The developmental and molecular processes required to form this junction are not known. To address this problem we designed studies to test the hypothesis that ectodermally-derived epithelial cells synthesize and secrete enamel proteins which function to nucleate and regulate the growth of enamel calcium phosphate crystals. Initial enamel crystals were detected separate from the adiacent dentine. Electron-microprobe analyses revealed that early enamel crystals were octacalciumphosphate or tricalciumphosphate rather than hydroxyapatite. Thereafter, enamel crystals became confluent with the adjacent, albeit significantly smaller hydroxyapatite crystals associated with mineralized dentine. Therefore, we interpret our data to indicate that de novo enamel crystal nucleation and growth are independent from the mineralization processes characterized for dentine. We further argue that gene expression of enamel protein appears to have a constitutive function during early enamel formation and that supramolecular aggregates of amelogenin and enamelin provide the microenvironment for the nucleation and crystal growth of the initial enamel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson HC (1973) Calcium-accumulating vesicles in the intercellular matrix of bone. Ciba Found Symp 11: 213–246

    Google Scholar 

  • Aoba T, Moreno EC (1989) Mechanism of amelogenetic mineralisation in minipig secretory enamel. In: Fearnhead RW (ed) Tooth Enamel V. Florence Publishers, Yokohama, pp 163–167

    Google Scholar 

  • Aoba T, Moreno EC, Kresak M, Tanabe T (1989) Possible roles of partial sequences at N- and C-terminal of amelogenin in protein-enamel mineral interaction. J Dent Res 68: 1331–1336

    Google Scholar 

  • Arsenault L Robinson BW (1989) The dentino-enamel junction: a structural and microanalytical study of early mineralization. Calcif Tiss Int 45: 111–121

    Google Scholar 

  • Bernard GW (1972) Ultrastructural observations of initial calcification in dentine and enamel. J Ultrastruct Res 17 41: 1–17

    Google Scholar 

  • Bonucci E (1973) The organic-inorganic relationships in calcified organic matrices. In Physico-Chimie et Cristallographie des Apatites d'intérét biologique. Colloques internationaux du centre national de la recherche scientifique 230, Paris, pp 231–246

  • Bonucci E (1979) Presence of crystal ghosts in bone nodules. Calc Tiss Int 29: 181–182

    Google Scholar 

  • Bonucci E (1984) Crystal-matrix relationships in calcifying organic matrices. INSERM 125: 459–472

    Google Scholar 

  • Boyde A (1964) The structure and development of mammalian enamel. PhD thesis. University of London, London

  • Bringas P, Nakamura M, Nakamura E, Evans J, Slavkin HC (1987) Ultrastructural analysis of enamel formation during in vitro development using chemically-defined medium Scann Micr 1: 1103–1108

    Google Scholar 

  • Deutsch D (1989) Structure and function of enamel gene products. Anat Rec 224: 189–210

    Google Scholar 

  • Diekwisch T, David S, Bringas P, Santos V, Slavkin HC (1993) Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Development 117: 471–482

    Google Scholar 

  • Doi Y, Eanes ED, Shimokawa H, Termine JD (1984) Inhbition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro in vitro. J Dent Res 63: 98–105

    Google Scholar 

  • Eanes ED (1973) Amorphous intermediates in the formation of biological apatites. In: Physico-Chimie et Cristallographie des Apatites d'intérét biologique. Colloques internationaux du centre national de la recherche scientifique 230, Paris, pp 296–301

  • Eanes ED, Termine JD, Nylen MU (1973) An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calc Tiss Res 12: 143–158

    Google Scholar 

  • Evans J, Bringas P, Nakamura M, Nakamura E, Santos V, Slavkin HC (1988) Metabolic expression of intrinsic developmental programs for dentine and enamel biomineralization in serumless, chemically-defined, organotypic culture. Calc Tiss Int 42:220–230

    Google Scholar 

  • Fearnhead RW (1979) Matrix-mineral relationships in enamel tissues. J Dent Res 58B:909–916

    Google Scholar 

  • Fincham AG, Hu Y, Lau EC, Slavkin H, Snead ML (1991) Amelogenin post-secretory processing during biomineralization in the postnatal mouse molar tooth. Archs Oral Biol 36:305–317

    Google Scholar 

  • Fincham AG, Lau EC, Simmer J, Zeichner-David M (1992) Amelogenin biochemistry—form and function. In: Slavkin H, Price P (eds) Chemistry and Biology of Mineralized Tissues. Elsevier, Amsterdam, pp 187–201

    Google Scholar 

  • Frank RM, Sognnaes RF, Kerns R (1960) Calcification of dental tissues with special reference to enamel ultrastructure. In: Calcification in Biological Systems. AAAS Washington DC, pp 163–202

    Google Scholar 

  • Glimcher MJ (1979) Phosphoproteins of enamel. J Dent Res 58B: 790–806

    Google Scholar 

  • Goodman AH, Martinez C, Chavez A (1991) Nutritional supplementation and the development of linear hypoplasias in children from Texonteopan, Mexico. Am J Clin Nutr 53:773–781

    Google Scholar 

  • Haeckel E (1966) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründer durch die von Charles Darwin reformierte Descendenz-Theorie, 2 vols. George Reimer, Berlin, vol 2, p 300

    Google Scholar 

  • Hayashi Y, Bianco P, Shimokawa H, Termine JD, Bonucci E (1986) Organic-inorganic relationships, and immunohistochemical localization of amelogenins and enamelins in developing enamel. Basic Appl Histochem 30:291–299

    Google Scholar 

  • Heughebaert JC, Montel G (1973) Sur la transformation des phosphates amorphes en phosphates apatitiques par reaction intracristalline. Coll Int CNRS 283-293

  • Höhling HJ (1966) Die Bauelemente von Zahnschmelz und Dentin aus morphologischer, chemischer und struktureller Sicht. Carl Hanser, Munich

    Google Scholar 

  • Höhling H, Barckhaus RH, Krefting ER, Althoff J, Quint P, Niestadtkötter R (1981) Relationship between the Ca-phosphate crystallites and the collagen structure in turkey tibia tendon. In: Veis A (ed) The Chemistry and Biology of Mineralized Tissues. Elsevier, Amsterdam, pp 113–117

    Google Scholar 

  • Infante PF, Gillespie M (1977) Enamel hypoplasia in relation to caries in Guatemalan children. J Dent Res 56: 493–498

    Google Scholar 

  • Johnsson MSA, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3:61–82

    Google Scholar 

  • Kallenbach E (1971) Electron microscopy of the differentiating rat incisor ameloblast. J Ultrastruct Res 35:508–515

    Google Scholar 

  • Kallenbach E (1982) Fine structure of extracted rat incisor enamel. J Dent Res 61: 1515–1523

    Google Scholar 

  • Kallenbach E (1986) Crystal-associated matrix components in rat incisor enamel. Cell Tissue Res 246:455–461

    Google Scholar 

  • Landis WJ (1985) Temporal sequence of mineralization in calcifying turkey tendon. In: Butler WT (ed) The Chemistry and Biology of Mineralized Tissues. EBSCO Media Birmingham, ALa., pp 497–500

    Google Scholar 

  • Landis WJ (1986) A study of calcification in the leg tendons from the domestic turkey. J Ultrastruc Res 94:217–238

    Google Scholar 

  • Landis WJ, Glimcher MJ (1982) Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodisperse particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res 78:227–268

    Google Scholar 

  • Oandis WJ, Burke GY, Neuringer JR, Paine MC, Nanci A, Bai P, Warshawsky H (1988) Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis. Anat Rec 220:233–238

    Google Scholar 

  • Landis WJ, Hodgens K, Song MJ, Arena J, Kiyonaga S, McEwen B (1992) Mineral and collagen interaction during calcification. In: Slavkin H, Price P (eds) Chemistry and Biology of Mineralized Tissues. Elsevier, Amsterdam, pp 211–219

    Google Scholar 

  • Lee DD, Landis WJ, Glimcher MJ (1986) The solid calciumphosphate mineral phases in embryonic chick bone characterized by high voltage electron diffraction. J Bone Min Res 1:425–432

    Google Scholar 

  • Lehner J, Plenk H (1932) Die Zähne. In: Stöhr v. Möllendorf (eds) Handbuch der mikroskopischen Anatomie V/3. Springer, Berlin, p 570

    Google Scholar 

  • Limeback H (1991) Molecular mechanisms in dental hard tissue mineralization. Curr Opinion Dent 1:826–835

    Google Scholar 

  • Nanci A, Bringas P, Samuel N, Slavkin HC (1983) Selachian tooth development: III. Ultrastructural features of secretory amelogenesis in Squalus acanthias. J Craniofac Gen Dev Biol 3:53–73

    Google Scholar 

  • Nanci A, Bendayan M, Slavkin HC (1985) Enamel protein biosynthesis and secretion in mouse incisor secretory ameloblasts as revealed by high resolution immunocytochemistry. J Histochem Cytochem 33:1153–1160

    Google Scholar 

  • Nancollas GH (1979) Enamel apatite nucleation and crystal growth. J Dent Res 58B:861–869

    Google Scholar 

  • Nancollas GH (1989) In vitro studies of calcium phosphate crystallization. In: Mann S, Webb J, Williams RJP (eds) Biomineralization. Chemical and Biochemical Perspectives. VCH, Weinheim, pp 157–187

    Google Scholar 

  • Nelson DGA, Barry JC (1989) High resolution electron microscopy of nonstoichiometric apatite crystals. Anat Rec 224:265–276

    Google Scholar 

  • Newesely H (1973) Epitaxy problems in biocrystalline ultra textures. In: Physico-Chimie et Cristallographie des Apatites d'intérét biologique. Colloques internationaux du centre national de la recherche scientifique 230, Paris, pp 203–209

  • Reith EJ (1960) The ultrastructure of ameloblasts from the growing end of rat incisors. Arch Oral Biol 2:253–262

    Google Scholar 

  • Reith EJ (1967) The early stage of amelogenesis as observed in molar teeth of young rats. J Ultrastruct Res 17:503–526

    Google Scholar 

  • Robinson C, Kirkham J, Briggs HD, Atkinson PJ (1982) Enamel proteins: from secretion to maturation. J Dent Res 61: 1490–1495

    Google Scholar 

  • Roennholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res 6:249–303

    Google Scholar 

  • Slavkin HC (1973) The isolation and characterization of calcifying and non-calcifying matrix vesicles from dentine. In: Physico-Chemie et Cristallographie des Apatites d'intérét biologique. Colloques internationaux du centre national de la recherche scientifique 230, Paris, pp 162–177

  • Slavkin HC, Mino W, Bringas P (1976) The biosynthesis and secretion of precursor enamel protein by ameloblasts as visualized by autoradiography after tryptophan administration. Anat Rec 185:289–312

    Google Scholar 

  • Smales FC (1975) Structural subunit in prisms of immature enamel. Nature 258:772–774

    Google Scholar 

  • Thompson SW, Hunt RD (1966) Histochemical procedures: Von Kossa staining for calcium. In: Selected Histochemical and Histopathological Methods. Thomas, Springfield, Illinois, pp 581–584

    Google Scholar 

  • Travis DF, Glimcher MJ (1964) The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel. J Cell Biol 23:447–497

    Google Scholar 

  • Warshawsky H (1989) Organization of crystals in enamel. Anat Rec 224:242–262

    Google Scholar 

  • Wuthier R (1992) Matrix vesicles: formation and function-mechanisms in membrane/matrix-mediated mineralization. In: Slavkin H, Price P (eds) Chemistry and Biology of Mineralized Tissues. Elsevier, Amsterdam, pp 143–152

    Google Scholar 

  • Yamada M, Bringas P, Grodin M, MacDougall M, Cummings E, Grimmett J, Weliky B, Slavkin HC (1980) Chemically defined organ culture of embryonic mouse tooth organs: morphogenesis, dentinogenesis, and amelogenesis. J Biol Buccale 8:127–139

    Google Scholar 

  • Yamauchi M, Chandler GS, Katz EP (1992) Collagen cross-linking and mineralization. In: Slavkin H, Price P (eds) Chemistry and Biology of Mineralized Tussues. Elsevier, Amsterdam, pp 39–46

    Google Scholar 

  • Yanagisawa T, Sawada T, Miake Y, Shimokawa H, Takuma S (1989) Immunocytochemistry of amelogenin and enamelin in vinblastine-treated rat-incisor ameloblasts and enamel. In: Fearnhead RW (ed) Tooth Enamel V. Florence Publishers, Yokohama, pp 181–185

    Google Scholar 

  • Young RA (1973) Some aspects of crystal structural modeling of biological apatites. In: Physico-Chimie et Cristallographie des Apatites d'intérét biologique. Colloques internationaux du centre national de la recherche scientifique 230, Paris, pp 21–39

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekwisch, T.G.H., Berman, B.J., Gentner, S. et al. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 279, 149–167 (1995). https://doi.org/10.1007/BF00300701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300701

Key words

Navigation