Skip to main content
Log in

Tensile properties of the annulus fibrosus

I. The contribution of fibre-matrix interactions to tensile stiffness and strength

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Résumé

Nous avons étudié les propriétés mécaniques d'échantillons d'anneau fibreux de disques lombaires humains soumis à la tension. La première partie de ce travail étudie l'effet de la taille de l'échantillon et de la rupture du collagène sur le résultat obtenu. Des tranches verticales de disque de 5 mm d'épaisseur et de 30 mm de largeur ont été taillées à partir des bords latéraux de l'annulus et des corps vertébraux adjacents. Les extrémités osseuses de chaque tranche ont été fixées dans un appareil destiné à tester les matériaux de manière à ce que l'annulus puisse être étiré verticalement, comme cela se produit lors des mouvements de flexion du rachis dans la vie courante. La raideur sous tension a été mesurée de manière répétitive après réduction de la taille effective de l'échantillon par des sections verticales successives de l'annulus. La raideur (par unité de surface) a diminué avec la taille du spécimen. La longueur moyenne des faisceaux de fibres de collagène dans les échantillons étudiés a été calculée à partir d'un modèle géométrique et il apparaît qu'elle est proportionnelle à la raideur sous tension. L'extrapolation des résultats a suggéré que la rigidité verticale et la solidité d'échantillons d'annulus de 15 mm de largeur devrait se situer autour de 44% de leur valeur in-situ. En conclusion, les fibres de collagène doivent être en continuité pour renforcer l'annulus, et les interactions fibresmatrice contribuent largement à la rigidité sous tension et à la résistance.

Summary

We investigated the tensile properties of samples of human lumbar annulus fibrosus. Here we consider the effect of sample size, and hence collagen disruption, on the results obtained. Vertical slices, 5 mm thick and 30 mm wide, were cut from the lateral margins of the annulus and adjacent vertebral bodies. The bony ends of each slice were secured in a materials testing machine so that the annulus could be stretched vertically, as occurs during bending movements of the spine in life. Tensile stiffness was measured repeatedly after successive vertical cuts in the annulus had reduced the effective size of the sample. Stiffness (per unit cross-sectional area) decreased as the specimen size decreased. The mean length of collagen fibre bundles in the specimens was calculated from a geometrical model and shown to be proportional to the tensile stiffness. Extrapolation of the results suggested that the vertical stiffness and strength of 15-mm-wide specimens of annulus would be about 44% of their values in situ. We conclude that collagen fibres need not be continous to reinforce the annulus and that fibre-matrix interactions make a large contribution to the tensile stiffness and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adams MA, Hutton WC (1982) Prolapsed intervertebral disca hyperflexion injury. Spine 7:184–191

    Google Scholar 

  2. Adams MA, Hutton WC (1983) The effect of fatigue on the lumbar intervertebral disc. J Bone Joint Surg [Br] 65:199–203

    Google Scholar 

  3. Adams MA, Hutton WC (1983) The effect of posture on the fluid content of lumbar intervertebral discs. Spine 8:665–671

    Google Scholar 

  4. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Google Scholar 

  5. Adams MA, Hutton WC, Stott JRR (1980) The resistance to flexion of the lumbar intervertebral joint. Spine 5:245–253

    Google Scholar 

  6. Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Joint Surg [Br] 68:36–41

    Google Scholar 

  7. Ashby MF, Jones DRH (1986) Engineering materials 2. An introduction to microstructures, processing and design, chapter 25. Pergamon Press, Oxford

    Google Scholar 

  8. Assheuer J, Jerosch J, Schulitz KP (1992) Diurnal changes in water content and shape of the degenerated disc. Proceedings of the International Society for the Study of the Lumbar Spine, Chicago, May 1992

  9. Bayliss MT, Johnstone B, O'Brien JP (1988) Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine 13:972–981

    Google Scholar 

  10. Brinckmann P, Biggemann M, Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech [Suppl 1]

  11. Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23:75–88

    Google Scholar 

  12. Eyre DR (1988) Collagens of the disc. In: Ghosh P (ed) The biology of the intervertebral disc, vol I. CRC Press, Boca Raton, pp 171–188

    Google Scholar 

  13. Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand [Suppl100]

  14. Gordon SJ, Yang KH, Mayer PJ, Mace AH, Kish VL, Radin EL (1991) Mechanism of disc rupture—a preliminary report. Spine 16:450–456

    Google Scholar 

  15. Hickey DS, Hukins DWL (1979) Effect of methods of preservation on the arrangement of collagen fibrils in connective tissue matrix: an X-ray diffraction study of annulus fibrosus. Connect Tissue Res 6:223–228

    Google Scholar 

  16. Hukins DWL, Aspden RM, Yarker YE (1984) Fibre reinforcement and mechanical stability in articular cartilage. Eng Med 13:153–156

    Google Scholar 

  17. Johnstone B, Urban JPG, Roberts S, Menage J (1992) The fluid content of the human intervertebral disc: comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Spine 17: 412–416

    Google Scholar 

  18. Kelsey JL, Githens PB, White AA, Holford TR, et al (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2:61–66

    Google Scholar 

  19. Klein JA, Hukins DWL (1982) Collagen fibres reorientate in the annulus fibrosus of intervertebral discs during bending and torsion, measured by X-ray diffraction. Biochem Biophys Acta 719:98

    Google Scholar 

  20. Koeller W, Meier W, Hartman F (1984) Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs. Spine 9:725–733

    Google Scholar 

  21. Liu YK, Njus G, Buckwalter J, Wakano K (1983) Fatigue response of lumbar intervertebral joints under axial cyclic loading. Spine 8:857–865

    Google Scholar 

  22. Liu YK, Goel VK, Dejong A, Njus G, Nishiyama K, Buckwalter J (1985) Torsional fatigue of the lumbar intervertebral joints. Spine 10:894–900

    Google Scholar 

  23. Marchand F, Ahmed AM (1989) Mechanical properties and failure mechanisms of the constituent components of the annulus fibrosus. Proceedings of 10th Annual Conference of the Canadian Biomaterials Society, Montreal, Canada, June 1989

  24. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine 15:402–410

    Google Scholar 

  25. Maroudas A (1982) Nutrition and metabolism of the intervertebral disc. In: White AA, Gordon SL (eds) Symposium on ideopathic low back pain. Mosby, St. Louis

    Google Scholar 

  26. McDevitt CA (1988) Proteoglycans of the intervertebral disc. In: Ghosh P (ed) The biology of the Intervertebral Disc, Vol I. CRC Press, Boca Raton, pp 151–170

    Google Scholar 

  27. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73

    Google Scholar 

  28. Shirazi-Adl A (1989) Strain in fibers of a lumbar disc. Analysis of the role of lifting in producing disc prolapse. Spine 14: 96–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.A., Green, T.P. Tensile properties of the annulus fibrosus. Eur Spine J 2, 203–208 (1993). https://doi.org/10.1007/BF00299447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299447

Mots-clés

Key words

Navigation