Skip to main content

Heavy water slows biological timing processes

Summary

Deuterium oxide lengthens the period of the endogenous tidal activity rhythm of the sand-beach isopod, Excirolana chiltoni. Heavy water has also been shown to retard the circadian rhythm of deer mice, when added to the animals' drinking water. The average dosage dependence of the effect can be estimated with high precision for both isopod and mouse, and the two values are indistinguishable. A similar slowing of circadian rhythms, due to D2O, has also been reported for an alga, a higher plant, two species of birds and three other rodents. Although data permitting reliable estimates of dosage dependence have not been published for these latter cases, the effect is apparently also of about the same magnitude. This evidence suggests fundamental similarities in the rhythmic mechanisms. Heavy water also produces a reversible slowing of several biological rhythms with periods in the millisecond range: the electric-organ discharge of a gymnotid fish (Stenarchus albifrons); the respiratory cycle of goldfish, as well as of an amphipod (Paraphoxus) and an isopod (Excirolana); and the cardiac cycle of a clam (Donax) and a crab (Emerita). Since these high-frequency rhythms originate in pacemakers dependent on diffusion processes, the experimental results suggest the possibility that long-period biological clocks are also based on diffusion-dependent pacemakers.

This is a preview of subscription content, access via your institution.

References

  • Barnes, T. C., Gaw, H. Z.: The chemical basis for some biological effects of heavy water. J. Amer. chem. Soc. 57, 590–591 (1935).

    Google Scholar 

  • —, Warren, J.: The heart rate in heavy water. Science 81, 346 (1935).

    Google Scholar 

  • Bodman, K. von: Die Wirkung von Pharmaca auf Kurzzeitschätzung und circadiane Periodik von Säugetieren. Z. vergl. Physiol. 68, 276–292 (1970).

    Google Scholar 

  • Bruce, V. G., Pittendrigh, C. S.: Endogenous rhythms in insects and microorganisms. Amer. Naturalist 91, 179–195 (1957).

    Google Scholar 

  • Bünning, E.: The physiological clock, second ed. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • —, Baltes, J.: Zur Wirkung von schwerem Wasser auf die endogene Tagesrhythmik. Naturwissenschaften 50, 622 (1963).

    Google Scholar 

  • Enright, J. T.: The tidal rhythm of activity of a sand-beach amphipod. Z. vergl. Physiol. 46, 276–313 (1963).

    Google Scholar 

  • —: Entrainment of a tidal rhythm. Science 147, 864–867 (1965).

    Google Scholar 

  • Erlenmeyer, H. B., Verzar, F.: Hat schweres Wasser Einfluß auf physiologische Vorgänge? Z. Biol. 97, 519–521 (1936).

    Google Scholar 

  • Feldman, J. R.: Lengthening the period of a biological clock in Euglena by cycloheximide, an inhibitor of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 57, 1080–1087 (1967).

    Google Scholar 

  • Hastings, J. W.: Biochemical aspects of rhythms: phase shifting by chemicals. Cold Spr. Harb. Symp. quant. Biol. 25, 131–143 (1960).

    Google Scholar 

  • —, Bode, V. C.: Biochemistry of rhythmic systems. Ann. N.Y. Acad. Sci. 98, 876–889 (1962).

    Google Scholar 

  • —, Kenyan, A.: Molecular aspects of circadian systems. In: Circadian clocks (ed. J. Aschoff), p. 167–182. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Heusner, A., Enright, J. T.: Long-term activity recording in small aquatic animals. Science 154, 532–533 (1966).

    Google Scholar 

  • Palmer, J. D., Dowse, H. B.: Preliminary findings on the effect of D2O on the period of circadian activity rhythms (Abstract). Biol. Bull. 137, 388 (1969).

    Google Scholar 

  • Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spr. Harb. Symp. quant. Biol. 25, 159–184 (1960).

    Google Scholar 

  • —, Bruce, V. G.: An oscillator model for biological clocks. In: Rhythmic and synthetic processes in growth (ed. D. Rudnick), p. 75–109. Princeton: Princeton Univ. Press 1957.

    Google Scholar 

  • —, Kaus, P.: On the significance of transients in daily rhythms. Proc. nat. Acad. Sci. (Wash.) 44, 965–973 (1958).

    Google Scholar 

  • Richter, C. P.: Blood-clock barrier: its penetration by heavy water. (Abstract). Proc. nat. Acad. Sci. (Wash.) 66, 244 (1970).

    Google Scholar 

  • Snyder, L. R. G.: Circadian rhythms and sun navigation in homing pigeons. Undergraduate thesis, Dept. of Biology, Harvard Univ. (1969).

  • Strumwasser, F.: The demonstration and manipulation of a circadian rhythm in a single neuron. In: Circadian clocks (ed. J. Aschoff), p. 442–462. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  • Suter, R. B., Rawson, K. S.: Circadian activity rhythm of the deer mouse, Peromyscus: effect of deuterium oxide. Science 160, 1011–1014 (1968).

    Google Scholar 

  • Teorell, T.: Electrokinetic membrane processes in relation to properties of excitable tissues. J. gen. Physiol. 42, 831–863 (1959).

    Google Scholar 

  • —: An analysis of the current-voltage relationship in excitable Nitella cells. Acta physiol. scand. 53, 1–6 (1961).

    Google Scholar 

  • —: Excitability phenomena in artificial membranes. Biophys. J. 2, part 2, 27–52 (1962).

    Google Scholar 

  • Thomson, J. R.: Biological effects of deuterium. New York: MacMillan 1963.

    Google Scholar 

  • Wahlström, G.: The effects of amphetamine sulfate on the self-selected circadian rhythm of activity and rest in the canary. Brit. J. Pharmacol. 34, 218 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research initiated under grant GB 5471 from the National Science Foundation; publication supported, in part, by the Sea Grant Program under Grant GH 112 to the University of California, and in part by grant GB 23949 from the National Science Foundation. Dr. T. H. Bullock provided the Stenarchus used for the experiments of Fig. 4, and offered helpful experimental advice. Dr. H. Scheich and Mr. R. Hamstra gave valuable assistance with the experimental setup; my thanks to all three.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Enright, J.T. Heavy water slows biological timing processes. Z. Vergl. Physiol. 72, 1–16 (1971). https://doi.org/10.1007/BF00299200

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299200

Keywords

  • Drinking Water
  • Deuterium
  • Circadian Rhythm
  • Activity Rhythm
  • Dosage Dependence