Skip to main content
Log in

Spontaneous regression of human melanoma/nonmelanoma skin cancer: Association with infiltrating CD4+ T cells

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Spontaneous regression occurs in some human malignant melanomas and basal cell carcinomas (BCCs). We have compared the cellular infiltrate in regressing and nonregressing tumors in order to analyze the mechanism by which regression occurs. Regressing primary melanomas and BCCs were infiltrated with a larger number of CD4+, but not CD8+, T lymphocytes than were seen in nonregressing tumors. The number of interleukin 2 receptor-positive (early activation marker) but not transferrin receptor-positive (intermediate activation marker) T cells was increased, indicating that the infiltrating T cells were activated. Large numbers of Langerhans cells, macrophages, and other class II major histocompatibility complex (MHC)-expressing cells were present but were not increased in the regressing tumors. There were no detectable B lymphocytes, and the regressing tumor cells displayed levels of HLA-DR expression similar to those of the nonregressing tumors. Comparison of squamous cell carcinoma (SCCs) with keratoacanthomas (KAs), which are likely to be a spontaneously regressing form of SCC, also showed increased infiltration of activated CD4+, but not CD8+, T cells within the KA. A murine ultraviolet (UV)-induced squamous tumor that spontaneously regresses when transplanted into immunocompetent syngeneic mice was also infiltrated with increased numbers of activated CD4+, but not CD8+, T cells prior to and during rejection. These results indicate that spontaneous regression of human skin tumors is likely to be immunologically mediated, and that CD4+ T lymphocytes seem to mediate this regression.

Résumé

Il semble que, chez l'homme, un certain nombre de mélanomes malins et de carcinomes basocellulaires (CBC) soient capables de régression spontanée. Nous avons comparé la cellularité des infiltrats des tumeurs qui régressent par rapport à celles qui ne régressent pas pour essayer de comprendre le mécanisme par lequel la régression se produisait. Les mélanomes et les CBC qui régressent avaient un plus grand nombre de lymphocytes T CD4+ mais pas de lymphocytes T CD8+ par rapport aux tumeurs qui ne régressaient pas. Le nombre de récepteurs IL-2 (early activation marker) de ces mêmes lymphocytes T était plus élevé alors que celui des récepteurs transferrine ne l'était pas, indiquant que les cellules T infiltrantes étaient activées. Il y avait aussi un plus grand nombre de cellules de Langerhans, de macrophages et d'autres cellules d'expression de la classe II MHC dans les tumeurs qui régressaient par rapport aux tumeurs qui ne régressaient pas. Il n'y avait pas de lymphocytes B et les tumeurs qui régressaient présentaient un expression HLA-DR similaire à celle de tumeurs qui ne régressaient pas. En comparant des carcinomes épithéliaux (CE) avec des kératocarcinomes (KC), (probablement une forme de régression spontanée de CE), la cellularité de ces derniers était augmentée en ce qui concerne les lymphocytes activés CD4+ mais pas les lymphocytes CD8+ par rapport aux CE. Une tumeur épithéliale induite par les UV chez la souris qui régressait spontanément lorsque l'on la transplante chez une souris syngénique immunocompétante présentait également une augmentation de lymphocytes CD4+ mais pas de CD8+ avant et pendant le rejet. Ces résultats indiquent que la régression spontanée des tumeurs de la peau humaine est probablement immunomédiée et que le médiateur est probablement le lymphocyte CD4+.

Resumen

La regresión espontánea ocurre en un porcentaje de los melanomas malignos y de los carcinomas basocelulares humanos. Hemos comparado el infiltrado celular en los tumores en regresión y en no regresión con el objeto de analizar el mecanismo por el cual ocurre la regresión. Los melanomas primarios en regresión y los carcinomas basocelulares aparecieron infiltrados por un número mayor de linfocitos T CD4+ pero no CD8+ en comparación con los tumores en no regresión. El número de receptores + de IL-2 (un marcador de activación precoz), pero no de receptores + de transferrina (marcador de activación intermedia) apareció aumentado, indicando que las células T infiltrantes habían sido activadas. Un gran número de células de Langerhans, macrófagos y otras células de la clase II MHC estuvieron presentes, aunque no incrementadas en los tumores en regresión. No hubo linfocitos B detectables, y los tumores en regresión exhibieron niveles similares de expresión HLA-DR que los tumores en no regresión. La comparación del carcinoma escamocelular con queroacantomas, que posiblemente son formas de regresión espontánea de un carcinoma escamocelular, también exhibieron infiltración por células T activadas CD4+ pero no CD8+ dentro del queroacantoma. Un tumor murino escamoso inducido que regresa espontáneamente cuando se lo transplanta a ratones singénicos immunocompetentes también apareció infiltrado con un aumentado número de células T CD4+ pero no CD8+ antes y durante la fase de rechazo. Estos resultados indican que la regresión espontánea de los tumores humanos de la piel posiblemente sea un fenómeno de mediación inmunitaria y que los linfocitos T CD4+ parecen ser los mediadores de la regresión.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kripke, M.L.: Antigenicity of murine skin tumors induced by ultraviolet light. J. Natl. Cancer Inst. 53:1333, 1974

    Google Scholar 

  2. Donawho, C., Kripke, M.L.: Immunogenicity and cross-reactivity of syngeneic murine melanomas. Cancer Commun. 2:101, 1990

    Google Scholar 

  3. Kripke, M.L.: Latency, histology, and antigenicity of tumors induced by ultraviolet light in three inbred mouse strains. Cancer Res. 37:1395, 1977

    Google Scholar 

  4. Van der Bruggen, P., Traversari, C., Chomez, P., et al.: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643, 1991

    Google Scholar 

  5. Traversari, C., van der Bruggen, P., Luescher, I.F., et al.: A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176:1453, 1992

    Google Scholar 

  6. Rheins, L.A., Nordlund, J.J.: Melanoma and immunity. In Immune Mechanisms in Cutaneous Disease, D.A. Norris, editor. New York, Marcel Dekker, 1989, pp. 769–787

    Google Scholar 

  7. Grimwood, R.E.: Immune response to basal cell and squamous cell carcinomas. In Immune Mechanisms in Cutaneous Disease, D.A. Norris, editor. New York, Marcel Dekker, 1989, pp. 789–798

    Google Scholar 

  8. Tefany, F.J., Barnetson, R.St.C., Halliday, G.M., McCarthy, S.W., McCarthy, W.H.: Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. J. Invest. Dermatol. 97:197, 1991

    Google Scholar 

  9. Hunt, M.J., Halliday, G.M., Weedon, D., Cooke, B.E., Barnetson, R.St.C.: Regression in basal cell carcinoma: an immunohistochemical analysis. Br. J. Dermatol. 130:1, 1994

    Google Scholar 

  10. Patel, A., Halliday, G.M., Cooke, B.E., Barnetson, R.St.C.: Evidence that regression in keratoacanthoma is immunologically mediated: a comparison with squamous cell carcinoma. Br. J. Dermatol. 131:789, 1994

    Google Scholar 

  11. Nathanson, L.: Spontaneous regression of malignant melanoma: a review of the literature on incidence, clinical features, and possible mechanisms: conference on spontaneous regression of cancer. Natl. Cancer Inst. Monogr. 44:67, 1976

    Google Scholar 

  12. Mackensen, A., Ferradini, L., Carcelain, G., et al.: Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res. 53:3569, 1993

    Google Scholar 

  13. McGovern, V.J., Shaw, H.M., Milton, G.W.: Prognosis in patients with thin malignant melanoma: influence of regression. Histopathology 7:673, 1983

    Google Scholar 

  14. Paladugu, R.R., Yonemoto, R.H.: Biologic behavior of thin malignant melanomas with regressive changes. Arch. Surg. 118:41, 1983

    Google Scholar 

  15. Sitz, K.V., Keppen, M., Johnson, D.F.: Metastatic basal cell carcinoma in acquired immunodeficiency syndrome-related complex. J.A.M.A. 257:340, 1987

    Google Scholar 

  16. Curson, C., Weedon, D.: Spontaneous regression in basal cell carcinomas. J. Cutan. Pathol. 6:432, 1979

    Google Scholar 

  17. King, D.F., Barr, R.J.: Intraepithelial elastic fibres and intracytoplasmic glycogen; diagnostic aids in differentiating keratoacanthoma from squamous cell carcinoma. J. Cutan. Pathol. 7:140, 1980

    Google Scholar 

  18. Herzberg, A.J., Kerns, B.J., Pollack, V., Kinney, R.B.: DNA image cytometry of keratoacanthoma and squamous cell carcinoma. J. Invest. Dermatol. 97:495, 1991

    Google Scholar 

  19. Stephenson, T.J., Royds, J., Silcocks, P.B., Bleehen, S.S.: Mutant p53 oncogene expression in keratoacanthoma and squamous cell carcinoma. Br. J. Dermatol. 127:556, 1992

    Google Scholar 

  20. Schwartz, R.A.: Keratoacanathoma. J. Am. Acad. Dermatol. 30:1, 1994

    Google Scholar 

  21. Knuth, A., Wolfel, T., Meyer zum Buschenfelde, K-H.: T cell responses to human malignant tumours. In A New Look at Tumour Immunology, A.J. McMichael, W.F. Bodmer, editors. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press, 1992, pp. 39–52

    Google Scholar 

  22. McGovern, V.J.: Spontaneous regression of melanoma. Pathology 7:91, 1975

    Google Scholar 

  23. Kern, W.H., McCray, M.K.: The histopathological differentiation of keratoacanthoma and squamous cell carcinoma. J. Cutan. Pathol. 7:318, 1980

    Google Scholar 

  24. Ferradini, L., Mackensen, A., Genevee, C., et al.: Analysis of T cell receptor variability in tumor-infiltrating lymphocytes from a human regressive melanoma. J. Clin. Invest. 91:1183, 1993

    Google Scholar 

  25. Ferradini, L., Roman-Roman, S., Azocar, J., et al.: Analysis of T-cell receptor α/β variability in lymphocytes infiltrating a melanoma metastasis. Cancer Res. 52:4649, 1992

    Google Scholar 

  26. Cantrell, D.A., Smith, K.A.: Transient expression of interleukin 2 receptors: consequences for T cell growth. J. Exp. Med. 158:1895, 1983

    Google Scholar 

  27. Hercend, T., Ritz, J., Schlossman, S.F., Reinherz, E.L.: Comparative expression of T9, T10 and Ia antigens on activated human T cell subsets. Hum. Immunol. 3:247, 1981

    Google Scholar 

  28. Triscott, J.: Regression in melanomas. In Malignant Skin Tumours, A.J.J. Emmett, M.G.E. O'Rourke, editors. Edinburgh, Churchill Livingstone, 1991, pp. 107–108

    Google Scholar 

  29. Singer, H., Tuck, D.I., Sampson, H.A., Hall, R.P.: Epidermal keratinocytes express the adhesion molecule intracellular adhesion molecule-1 in inflammatory dermatoses. J. Invest. Dermatol. 92:746, 1989

    Google Scholar 

  30. Symington, F.W., Santos, E.B.: Lysis of human keratinocytes by allogeneic HLA class I-specific cytotoxic T cells. J. Immunol. 146: 2169, 1991

    Google Scholar 

  31. Asch, A.S., Barnwell, J., Silversteen, R.L., Nachman, R.L.: Isolation of the thrombospondin membrane receptor. J. Clin. Invest. 79:1054, 1987

    Google Scholar 

  32. Van Joost, T., Kozel, M.M., Tank, B., Troost. R., Prens, E.P.: Cyclosporin in atopic dermatitis: modulation in the expression of immunologic markers in lesional skin. J. Am. Acad. Dermatol. 27:922, 1992

    Google Scholar 

  33. Simon, M., Hunyadi, J.: Expression of OKM5 antigen on human keratinocytes in positive intracutaneous tests for delayed-type hypersensitivity. Dermatologica 175:121, 1987

    Google Scholar 

  34. Hunyadi, J., Simon, M.: Expression of OKM5 on human keratinocytes in vitro upon stimulation with γ-interferon. Acta Derm. Venereol. (Stockh.) 66:527, 1986

    Google Scholar 

  35. McArdle, J.P., Knight, B.A., Halliday, G.M., Muller, H.K., Rowden, G.: Quantitative assessment of Langerhans cells in actinic keratosis, Bowen's disease, keratoacanthoma, squamous cell carcinoma and basal cell carcinoma. Pathology 18:212, 1986

    Google Scholar 

  36. Grabbe, S., Bruvers, S., Gallo, R.L., Knisely, T.L., Nazareno, R., Granstein, R.D.: Tumor antigen presentation by murine epidermal cells. J. Immunol. 146:3656, 1991

    Google Scholar 

  37. Toews, G.B., Bergstresser, P.R., Streilein, J.W., Sullivan, S.: Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J. Immunol. 124:445, 1980

    Google Scholar 

  38. Halliday, G.M., Odling, K.A., Ruby, J.C., Muller, H.K.: Suppressor cell activation and enhanced skin allograft survival after tumor promotor but not initiator induced depletion of cutaneous Langerhans cells. J. Invest. Dermatol. 90:293, 1988

    Google Scholar 

  39. Bergfelt, L., Bucana, C., Kripke, M.L.: Alterations in Langerhans cells during growth of transplantable murine tumors. J. Invest. Dermatol. 91:129, 1988

    Google Scholar 

  40. Halliday, G.M., Reeve, V.E., Barnetson, R.St.C.: Langerhans cell migration into ultraviolet light-induced squamous skin tumors is unrelated to anti-tumour immunity. J. Invest. Dermatol. 97:830, 1991

    Google Scholar 

  41. Halliday, G.M., Lucas, A.D., Barnetson, R.St.C.: Control of Langerhans' cell density by a skin tumour-derived cytokine. Immunology 77:13, 1992

    Google Scholar 

  42. Rosenberg, S.A., Packard, B.S., Aebersold, P.M. et al.: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report. N. Engl. J. Med. 319:1676, 1988

    Google Scholar 

  43. Cornell, R.C., Greenway, H.T., Tucker, S.B., et al.: Intralesional interferon therapy for basal cell carcinoma. J. Am. Acad. Dermatol. 23:694, 1990

    Google Scholar 

  44. Dranoff, G., Jaffee, E., Lazenby, A., et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. U.S.A. 90:3539, 1993

    Google Scholar 

  45. Tuttle, T.M., Mccrady, C.W., Inge, T.H., Salour, M., Bear, H.D.: Gamma-interferon plays a key role in T-cell-induced tumor regression. Cancer Res. 53:833, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halliday, G.M., Patel, A., Hunt, M.J. et al. Spontaneous regression of human melanoma/nonmelanoma skin cancer: Association with infiltrating CD4+ T cells. World J. Surg. 19, 352–358 (1995). https://doi.org/10.1007/BF00299157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299157

Keywords

Navigation