Skip to main content
Log in

Electron microscopic localization of replication origins in Oenothera chloroplast DNA

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boffey SA (1985) The chloroplast division cycle and its relationship to the cell division cycle. In: Bryant JA, Francis D (eds) The cell division cycle in plants, Society for Experimental Biology seminar series, vol 26. Cambridge University Press, Cambridge, pp 233–246

    Google Scholar 

  • Cairns J (1963) The chromosome of Escherichia coli. Cold Spring Harbor Symp Quant Biol 28:43–46

    Google Scholar 

  • Chiu W-L, Stubbe W, Sears BB (1988) Plastid inheritance in Oenothera: organelle genome modifies the extent of biparental plastid transmission. Curr Genet 13:181–189

    Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Google Scholar 

  • Gold B, Carrillo N, Tewari KK, Bogorad L (1987) Nucleotide sequence of a preferred maize chloroplast genome template for in vitro DNA synthesis. Proc Natl Acad Sci USA 84:194–198

    Google Scholar 

  • Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Physical mapping of differences in chloroplast DNA of the five wildtype plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61:373–384

    Google Scholar 

  • Heinhorst S, Cannon GC, Weissbach A (1985) Plastid and nuclear DNA synthesis are not coupled in suspension cells of Nicotiana tabacum. Plant Mol Biol 4:3–12

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Winter P, Tittgen J, Bisanz C, Sears BB, Nelson N, Hurt E, Hauska G, Viebrock A, Sebald W (1983) Identification and characterization of genes for polypeptides of the thylakoid membrane. In: Cifferi O, Dure L III (eds) Structure and function of plant genomes. Plenum Press, New York, pp 143–153

    Google Scholar 

  • Kirk JTO, Tilney-Bassett RAE (1978) The Plastids. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Koller B, Delius H (1982) Origin of replication in chloroplast DNA of Euglena gracilis located close to the region of variable size. EMBO J 1:995–998

    Google Scholar 

  • Kolodner RD, Tewari KK (1975 a) Presence of displacement loops in the covalently closed circular chloroplast deoxyribonucleic acid from higher plants. J Biol Chem 250:8840–8847

    Google Scholar 

  • Kolodner RD, Tewari KK (1975 b) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256:708–711

    Google Scholar 

  • Kornberg A (1980) DNA replication. WH Freeman and Company, San Francisco

    Google Scholar 

  • Lammpa GK, Bendich AJ (1979) Changes in chloroplast DNA levels during development of pea (Pisum sativum). Plant Physiol 64:126–130

    Google Scholar 

  • Lawrence ME, Possingham JV (1986) Microspectrofluorometric measurement of chloroplast DNA in dividing and expanding leaf cells of Spinacia oleracea. Plant Physiol 81:708–710

    Google Scholar 

  • Meeker R, Nielsen B, Tewari KK (1988) Localization of replication origins in pea chloroplast DNA. Mol Cell Biol 8:1216–1223

    Google Scholar 

  • Palmer JD (1982) Physical and gene mapping of chloroplast DNA from Atriplex triangularis and Cucumis sativa. Nucleic Acids Res 10:1593–1605

    Google Scholar 

  • Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD, Thompson WE (1981) Rearrangements in the chloroplast genome of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Piskur J (1988) Transmission of yeast mitochondrial loci to progeny is reduced when nearby intergenic regions containing ori/rep sequences are deleted. Mol Gen Genet 214:425–432

    Google Scholar 

  • Piskur J (1989) Transmission of the yeast mitochondrial genome to progeny: the impact of intergenic sequences. Mol Gen Genet 218:161–168

    Google Scholar 

  • Ravel-Chapuis P, Heizmann P, Bigon V (1982) Electron microscopic localization of the replication origin of Euglena gracilis chloroplast DNA. Nature 300:78–81

    Google Scholar 

  • Santulli A, Casale A, Mazza A (1983) Cairns replicative intermediates in Acetabularia chloroplast DNA. J Submicrosc Cytol 15:843–847

    Google Scholar 

  • Schötz F (1974) Untersuchungen über die Plastidenkonkurrenz bei Oenothera. IV. Der Einfluß des Genoms auf die Durchsetzungsfähigkeit der Plastiden. Biol Zentralbl 93:41–64

    Google Scholar 

  • Schötz F (1975) Untersuchungen über die Plastidenkonkurrenz bei Oenothera. V. Die Stabilität der Konkurrenzfähigkeit bei Verwendung verschiedenartiger mutierter Test-Plastiden. Biol Zentralbl 94:17–26

    Google Scholar 

  • Scott NS, Cain P, Possingham V (1982) Plastid DNA levels in albino and green leaves of the ‘albostrians’ mutant of Hordeum vulgare. Z Pflanzenphysiol 108:187–192

    Google Scholar 

  • Stubbe W (1989) Oenothera — An ideal system for studying the interactions of genome and plastome. Plant Mol Biol Rep 7:245–257

    Google Scholar 

  • Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5:51–70

    Google Scholar 

  • Umesono K, Ozeki H (1987) Chloroplast gene organization in plants. Trends Genet 3:281–287

    Google Scholar 

  • Waddell J, Wang X-M, Wu M (1984) Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardii. Nucleic Acids Res 12:3843–3856

    Google Scholar 

  • Walbot V, Coe EH (1979) Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc Natl Acad Sci USA 76:1760–1764

    Google Scholar 

  • Wu M, Lou JK, Chang DY, Chang CH, Nie ZQ (1986) Structure and function of a chloroplast DNA replication origin of Chlamydomonas reinhardii. Proc Natl Acad Sci USA 83:6761–6765

    Google Scholar 

  • Yamada T, Shimaji M, Fukuda Y (1986) Characterization of a cpDNA sequence from Chlorella ellipsoidea that promotes autonomous replication in yeast. Plant Mol Biol 6:245–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R.G. Herrmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, WL., Sears, B.B. Electron microscopic localization of replication origins in Oenothera chloroplast DNA. Molec. Gen. Genet. 232, 33–39 (1992). https://doi.org/10.1007/BF00299134

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299134

Key words

Navigation