Computational Mechanics

, Volume 1, Issue 1, pp 43–63 | Cite as

Vibration isolation using open or filled trenches

Part 1 : 2-D homogeneous soil
  • D. E. Beskos
  • B. Dasgupta
  • I. G. Vardoulakis
Article

Abstract

The problem of structural isolation from ground transmitted vibrations by open or infilled trenches under conditions of plane strain is numerically studied. The soil medium is assumed to be linear elastic or viscoelastic, homogeneous and isotropic. Horizontally propagating Rayleigh waves or waves generated by the motion of a rigid foundation or by surface blasting are considered in this work. The formulation and solution of the problem is accomplished by the boundary element method in the frequency domain for harmonic disturbances or in conjunction with Laplace transform for transient disturbances. The proposed method, which requires a discretisation of only the trench perimeter, the soil-foundation interface and some portion of the free soil surface on either side of the trench appears to be better than either finite element or finite difference techniques. Some parametric studies are also conducted to assess the importance of the various geometrical, material and dynamic input parameters and provide useful guidelines to the design engineer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudi, J. (1971): The motion excited by an impulsive source in an elastic half-space with a surface obstacle. Bull. Seism. Soc. Amer. 61, 747–763Google Scholar
  2. Aboudi, J. (1973): Elastic waves in half-space with thin barrier. Proc. ASCE, 99, J. Engng. Mechs. Dir., EMI, 69–83Google Scholar
  3. Abramowitch, M.; Stegun, I.R. (1974): Handbook of mathematical functions. New York: DoverGoogle Scholar
  4. Angel, Y.C.; Achenbach, J.D. (1984): Reflection and transmission of obliquely incident Rayleigh waves by a surface-breaking crack. J. Acoust. Soc. Amer. 75, 313–319Google Scholar
  5. Avilés, J.; Sánchez-Sesma, F.J. (1983): Piles as barriers for elastic waves. Proc. ASCE 109, No 9, J. Geotechn. Eng., 1133–1146Google Scholar
  6. Banerjee, P.K.; Ahmad, S.; Manolis, G.D. (1986): Advanced elastodynamic analysis, Chapter 5. In: Beskos, D.E. (ed) Boundary element methods in mechanics. Amsterdam: North-HollandGoogle Scholar
  7. Barkan, D.D. (1962): Dynamics of bases and foundations. New York: McGraw-HillGoogle Scholar
  8. Beskos, D.E.; Dasgupta, B.; Vardoulakis, I.G. (1985): Vibration isolation of machine foundations. In: Gazetas, G.; Selig, E.T. (eds): Vibration problems in geotechnical engineering, pp. 138–151, New York: ASCEGoogle Scholar
  9. Chu, L.L.; Askar, A.; Cakmak, A.S. (1982): An approximate method for scattering in elastodynamics — The born approximation, I: the general formulation; II: SH-waves in infinite and half-space. Soil Dyn. Earth Engng. 1, 59–66, 102-116Google Scholar
  10. Cruse, T.A.; Rizzo, F.J. (1968): A direct formulation and numerical solution of the general transient elastodynamic problem, I. J. Math. Anal. Appl. 22, 244–259Google Scholar
  11. Cruse, T.A. (1968): A direct formulation and numerical solution of the general transient elastodynamic problem, II. J. Math. Anal. Appl. 22, 341–355Google Scholar
  12. Dasgupta, B. (1986): Vibration isolation of structures on homogeneous soil. Ph. D. Thesis, University of Minnesota, Minneapolis, MinnesotaGoogle Scholar
  13. Dolling, H.J. (1965): Schwingungsisolierung von Bauwerken durch tiefe auf geeignete Weise stabilisierte Schlitze. VDI-Ber. 88, 3741Google Scholar
  14. Dolling, H.J. (1970a): Die Abschirmung von Erschutterungen durch Bodenschlitze. Bautechnik 47, 151–158Google Scholar
  15. Dolling, H.J. (1970b): Die Abschirmung von Erschütterungen durch Bodenschlitze. Bautechnik 47, 194–204Google Scholar
  16. Dominguez, J. (1978): Response of embedded foundations to travelling waves. Rep. R78-24, Dept. of Civil Engng., M.I.T.Google Scholar
  17. Dominguez, J.; Alarcon, E. (1981): Elastodynamics. In: Brebbia, C.A. (ed): Progress in boundary element methods, Vol. 1, pp. 213–257. London: Pentech PressGoogle Scholar
  18. Dravinski, M.; Than, S.A. (1976a): Multiple diffractions of elastic waves by a rigid rectangular foundation: Plane strain model. J. Appl. Mech. 43, 291–294Google Scholar
  19. Dravinski, M.; Thau, S.A. (1976b): Multiple diffractions of elastic shear waves by a rigid rectangular foundation embedded in an elastic half-space. J. Appl. Mech. 43, 295–299Google Scholar
  20. Dravinski, M. (1980): Scattering of elastic waves by an alluvial valley of arbitrary shape. Rep. No. CE 80-06, Dept. of Civil Engng., Univ. of Southern California, Los Angeles, CaliforniaGoogle Scholar
  21. Dravinski, M. (1982a): Scattering of SH waves by subsurface topography. Proc. ASCE 108, J. Engng. Mechs. Dir., EMI, 1–17Google Scholar
  22. Dravinski, M. (1982b): Scattering of elastic waves by an alluvial valley. Proc. ASCE 108, J. Engng. Mechs. Dir., EMI, 19–31Google Scholar
  23. Dravinski, M. (1982c): Influence of interface depth upon strong ground motion. Bull. Seism. Soc. Amer. 72, 597–614Google Scholar
  24. Durbin, F. (1974): Numerical inversion of Laplace transforms: an efficient improvement to Dubner's and Abate's method. Computer J. 17, 371–376Google Scholar
  25. Emad, K.; Manolis, G.D. (1985): Shallow trenches and propagation of surface waves. J. Engng. Mech., ASCE 111, 279–282Google Scholar
  26. Fuyuki, M.; Matsumoto, Y. (1980): Finite difference analysis of Rayleigh wave scattering at a trench. Bull. Seism. Soc. Amer. 70, 2051–2069Google Scholar
  27. Haupt, W.A. (1977): Isolation of vibrations by concrete core walls. Proc. 9th Int. Conf. Soil Mech. Found. Engng. Tokyo, 2, 251–256Google Scholar
  28. Haupt, W.A. (1978a): Numerical methods for the computation of steady-state harmonic wave fields. In: Prange, B. (ed): Dynamical methods in soil and rock mechanics, pp 255–280. Rotterdam: BalkemaGoogle Scholar
  29. Haupt, W.A. (1978b): Surface waves in non-homogeneous half-space. In: Prange, B. (ed): Dynamical methods in soil and rock mechanics, pp 335–367. Rotterdam: BalkemaGoogle Scholar
  30. Haupt, W.A. (1978c): Behaviour of surface waves in in-homogeneous half-space with special consideration of wave isolation, (in german). Ph. D. thesis, University of KarlsruheGoogle Scholar
  31. Hudson, J.A. (1967): Scattered surface waves from a surface obstacle. Geophys. J. R. Astr. Soc. 13, 441–458Google Scholar
  32. Karabalis, D.L.; Beskos,D.E.: Dynamic response of 3-D rigid embedded foundations by the boundary element method. Comp. Meth. Appl. Mech. Eng. (To appear)Google Scholar
  33. Knopoff, L. (1959a): Scattering of compression waves by spherical obstacles. Geophysics 24, 30–39Google Scholar
  34. Knopoff, L. (1959b): Scattering of shear waves by spherical obstacles. Geophysics 24, 209–219Google Scholar
  35. Kobayashi, S.; Nishimura, N. (1982): Transient stress analysis of tunnels and cavities of arbitrary shape due to travelling waves. In: Banerjee, P.K.; Shaw, R.P. (eds.): Developments in boundary element methods-2, pp 177–210. London: Applied Sci.Google Scholar
  36. Lee, V.W. (1982): A note on the scattering of elastic plane waves by a hemispherical canyon. Soil Dyn. Earth. Eng. 1, 122–129Google Scholar
  37. Liao, S.; Sangrey, D.A. (1978): Use of piles as isolation barriers. Proc. ASCE 104, J. Geotech. Engng. Dir., GT9, 1139–1152Google Scholar
  38. Luco, J.E. (1969): Dynamic interaction of a shear wall with the soil. Proc. ASCE 95, J. Engng. Mechs. Dir., EM2, 333–346Google Scholar
  39. Luco, J.E. (1976): Torsional response of structures for SH waves: the case of hemispherical foundations. Earth. Eng. Struct. Dyn. 66, 109–123Google Scholar
  40. Luco, J.E.; Wong, H.L.; Trifunac, M.D. (1975): A note on the dynamic response of rigid embedded foundations. Earth. Eng. Struc. Dyn. 4, 119–127Google Scholar
  41. Mal, A.K.; Knopoff, L. (1975): Transmission of Rayleigh waves past a step change in elevation. Bull. Seism. Soc. Amer. 55, 319–334Google Scholar
  42. Manolis, G.D.; Beskos, D.E. (1981): Dynamic stress concentration studies by boundary integrals and Laplace transform. Int. J. Num. Meth. Eng. 17, 573–599Google Scholar
  43. Manolis, G.D.; Beskos, D.E. (1983): Dynamic response of lined tunnels by an isoparametric boundary element method. Comp. Meth. Appl. Mech. Eng. 36, 291–307Google Scholar
  44. May, T.W.; Bolt, B.A. (1982): The effectiveness of trenches in reducing seismic motion. Earth. Eng. Struct. Dyn. 10, 195–210Google Scholar
  45. McNeill, R. L.; Margason, B.E.; Babcock, F.M. (1965) : The role of soil dynamics in the design of stable test pads, pp 366–375. Guidance and Control Conference, Minneapolis, MinnesotaGoogle Scholar
  46. Mei, C.C.; Foda, M.A. (1979): An analytical theory of resonant scattering of SH waves by thin overground structures. Earth. Eng. Struct. Dyn. 7, 335–353Google Scholar
  47. Mendelsohn, D.A.; Achenbach, J.D.; Keer, L.M. (1980): Scattering of elastic waves by a surface-breaking crack. Wave Motion 2, 277–292Google Scholar
  48. Miller, G.F.; Pursey, H. (1955): On the partition of energy between elastic waves in a semi-infinite solid. Proc. Roy. Soc. London, A 233, 55–69Google Scholar
  49. Narayanan, G.V.; Beskos, D.E. (1982): Numerical operational methods for time dependent linear problems. Int. J. Num. Meth. Eng. 18, 1829–1854Google Scholar
  50. Neumeuer, H. (1963): Untersuchungen über die Abschirmung eines bestehenden Gebäudes gegen Erschütterungen beim Ban und Betrieb einer U-Bahnstrecke. Baumaschine and Bautechnik 10, 23–29Google Scholar
  51. Pao, Y.H.; Mow, C.C. (1963): Scattering of plane compressional waves by a spherical obstacle. J. Appl. Phys. 34, 493–499Google Scholar
  52. Pao, Y.H.; Mow, C.C. (1973): Diffraction of elastic waves and dynamic stress concentrations. New York: Crane RussakGoogle Scholar
  53. Richart, Jr., F.E.; Hall, Jr., J.R.; Woods, R.D. (1970): Vibrations of soils and foundations. Englewood Cliffs, N.J.: Prentice HallGoogle Scholar
  54. Rizzo,F.J.; Shippy,D.J.; Rezayat,M. (1985a): Boundary integral equation analysis for a class of earth-structure interaction problems. Rep. to NSF, Dept. of Engg. Mechs. University of KentuckyGoogle Scholar
  55. Rizzo, F.J.; Shippy, D.J.; Rezayat, M. (1985b): A boundary integral equation method for radiation and scattering of elastic waves in 3-dimensions. Int. J. Num. Meth. Eng. 21, 115–129Google Scholar
  56. Sánchez-Sesma, F.J.; Esquivel, J.A. (1979): Ground motion on alluvial valleys under incident plane SH waves. Bull. Seism. Soc. Amer. 69, 1107–1120Google Scholar
  57. Sánchez-Sesma, F.J.; Rosenblueth, E. (1979): Ground motion at canyons of arbitrary shape under incident SH wave. Earth. Eng. Struct. Dyn. 7, 441–450Google Scholar
  58. Sánchez-Sesma, F.J. (1983): Diffraction of elastic waves by three-dimensional surface irregularities. Bull. Seism. Soc. Amer. 73, 1621–1636Google Scholar
  59. Segol, G.; Lee, P.C.Y.; Abel, J.F. (1978): Amplitude reduction of surface waves by trenches. Proc. ASCE 104, J. Engng. Mechs. Dir., EM3, 621–641Google Scholar
  60. Spyrakos, C.C. ; Beskos, D.E. : Dynamic response of rigid strip foundations by time domain boundary element method. Int. J. Num. Method. Eng. (To appear)Google Scholar
  61. Stroud, A.H.; Secrest, D. (1966): Gaussian quadrature formulas. Englewood Cliffs, N.J.: Prentice HallGoogle Scholar
  62. Thau, S.A.; Pao, Y.H. (1966): Diffractions of horizontal shear waves by a parabolic cylinder and dynamic stress concentrations. J. Appl. Mech. 33, 785–792Google Scholar
  63. Thau, S.A.; Umek, A. (1973): Transient response of a burried foundation to anti-plane shear waves. J. Appl. Mech. 40, 1061–1066Google Scholar
  64. Thau, S.A.; Umek, A. (1974): Coupled rocking and translating vibrations of a burried foundation. J. Appl. Mech. 41, 697–702Google Scholar
  65. Trifunac, M.D. (1973): Scattering of plane SH waves by a semicylindrical canyon. Earth. Eng. Struct. Dyn. 1, 267–281Google Scholar
  66. Wass, G. (1972): Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media. Ph. D. thesis, University of California, Berkeley, CaliforniaGoogle Scholar
  67. Woods, R.D. (1967): Screening of elastic surface waves by trenches. Ph.D. thesis, University of Michigan, Ann Arbor, MichiganGoogle Scholar
  68. Woods, R.D. (1968): Screening of surface waves in soils. Proc. ASCE 94, J. Soil Mechs. Found. Engng. Dir., SM4, 951–979Google Scholar
  69. Woods, R.D.; Barnett, N.E.; Sagesser, R. (1974): Holography, a new tool for soil dynamics. Proc. ASCE 100, J. Geotech. Engng. Dir., GT11, 1231–1247Google Scholar
  70. Woods, R.D.; Richart, Jr., F.E. (1967): Screening of elastic surface waves by trenches. Proc. Int. Symp. on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, N.M.Google Scholar
  71. Wong, H.L.; Jennings, P.C. (1975): Effects of canyon topography on strong ground motion. Bull. Seism. Soc. Amer. 65, 1239–1257Google Scholar
  72. Wong, H.L.; Trifunac, M.D. (1974): Scattering of plane SH waves by a semielliptical canyon. Earth. Eng. Struct. Dyn. 3, 157–169Google Scholar
  73. Wong, H.L.; Trifunac, M.D.; Westermo, B. (1977): Effects of surface and subsurface irregularities on the amplitude of monochromatic waves. Bull. Seism. Soc. Amer. 67, 353–368Google Scholar
  74. Wong, H.L. (1982): Effect of surface topography on the diffraction of P, SV and Rayleigh waves. Bull. Seism. Soc. Amer. 72, 1167–1183Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • D. E. Beskos
    • 1
  • B. Dasgupta
    • 2
  • I. G. Vardoulakis
    • 2
  1. 1.Department of Civil EngineeringUniversity of PatrasPatrasGreece
  2. 2.Department of Civil and Mineral EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations