Skip to main content
Log in

Motoneurons of M. semitendinosus in domestic and wild pigs

A horseradish peroxidase and cord-survey study

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

In domestic and wild pigs motor nuclei of the M. semitendinosus were labelled by retrograde transport of horseradish peroxidase (HRP) from muscle to spinal cord. Further motoneurons in the lumbosacral cord were stained with Luxol-fast-blue and cresyl violet.

Motoneurons innervating M. semitendinosus were present in the ventral horns of the last (6th) lumbal and the first sacral cord segments. They were localized within two motor columns lying parallel to each other in the medial and lateroventral position. Both parts of the semitendinosus motor nuclei showed a spindle-like shape with both cranial and caudal enlargements.

Localization, extent, and shape of the semitendinosus motor nuclei were similar in domestic and wild pigs. The average motoneuron diameter was larger in domestic than in wild pigs. The lumbosacral cord of the wild pig was thicker than that of the domestic pig.

It is suggested that the size of α-motoneurons has increased as a result of selective breeding after domestication. This process might correlate with a higher incidence of myopathies in domestic pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beermann DH, Cassens RG (1977) Terminal innervation ratios and fiber type grouping in normal porcine skeletal muscle. Anat Embryol 150:123–127

    PubMed  Google Scholar 

  • Bickhardt K, Chevalier H-J, Giese W, Reinhardt HJ (Eds) (1972) Akute Rückenmuskelnekrose und Belastungsmyopathie beim Schwein. Fortschritte der Vet. Med. Berlin/Hamburg, Parey

    Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960a) Differentiation of fast and slow muscles in the cat hind limb. J Physiol 150:399–416

    PubMed  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960b) Interactions between motoneurones and muscles in respect of the characteristic speed of their responses. J Physiol 150:417–439

    PubMed  Google Scholar 

  • Burke RE, Strick PL, Kanda K, Kim CC, Walmsley B (1977) Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J Neurophysiol 40:667–680

    PubMed  Google Scholar 

  • Cassens RG, Cooper CC, Briskey EJ (1969) The occurrence and histochemical characterization of giant fibers in the muscle of growing and adult animals. Acta Neuropathol 12:300–308

    PubMed  Google Scholar 

  • Drommer W (1972) Permeabilitätsstörungen im zentralen Nervensystem des Schweines. Acta Neuropathol 20:299–315

    PubMed  Google Scholar 

  • Henneman E (1981) Recruitment of motoneurons: the size principle. Progr Clin Neurophysiol 9:26–60

    Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965a) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965b) Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol 28:599–620

    PubMed  Google Scholar 

  • Janković ZK (1954) Das Rückenmark, die Rückenmarkshüllen, ihre Zwischenräume und ihre Topographie bei den Schweinen. Acta Vet (Beograd) 4:73–88

    Google Scholar 

  • Johannsen U, Kunz G (1980) Untersuchungen zur Pathomorphologie der Skelettmuskulatur bei Schweinen mit Transporttod. Arch Exp Vet Med 34:273–289

    Google Scholar 

  • Kluever H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403 (1953)

    PubMed  Google Scholar 

  • Luescher HR, Ruenzel P, Henneman E (1979) How the size of motoneurons determines their susceptibility to discharge. Nature 289:859–861

    Google Scholar 

  • Martin AH, Fredeen HT, L'Hirondelle PJ, Murray AC, Weiss GM (1981) Pork quality attributes: Their estimation and their relationship with carcass composition of commercial pigs. Can J Anim Sci 61:289–298

    Google Scholar 

  • McHanwell S, Biscoe TJ (1981) The sizes of motoneurons supplying hindlimb muscles in the mouse. Proc R Soc Lond B 213:201–216

    PubMed  Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reactionproduct with superior sensitivity for visualizing afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  Google Scholar 

  • Nickel R, Schummer A, Seiferle E (eds) (1975) Lehrbuch der Anatomie der Haustiere. Bd. IV: Nervensystem, endokrine Drüsen, Sinnesorgane. P. Parey, Berlin und Hamburg

    Google Scholar 

  • Pelckmans A (1964) The influence of fixation upon staining according to Kluever and Barrera. Acta Histochem 19:329–336

    PubMed  Google Scholar 

  • Rapoport S (1978) Location of sternocleidomastoid and trapezius motoneurons in the cat. Brain Res 156:339–344

    Article  PubMed  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the rat. J Comp Neurol 96:415–495

    Google Scholar 

  • Rexed B (1964) Some aspects of the cytoarchitectonics and synaptology of the spinal cord. In: Eccles JC, Schadé JP (Eds): Organization of the spinal cord. Progr Brain Res 11:58–92

  • Romanes GJ (1964) The motor pools of the spinal cord. In: Eccles JC, Schadé JP (Eds) Organization of the spinal cord. Progr Brain Res 11:93–119

  • Salmons S, Sréter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    PubMed  Google Scholar 

  • Salmons S, Vrbová G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscle. J Physiol 201:535–549

    PubMed  Google Scholar 

  • Swatland HJ, Cassens RG (1973) Prenatal development, histochemistry and innervation of porcine muscle. J Anim Sci 36:343–354

    PubMed  Google Scholar 

  • Szentkuti L, Cassens RG (1979) Motor innervation of myofiber types in porcine skeletal muscle. J Animal Sci 49:693–700

    Google Scholar 

  • Szentkuti L, Niemeyer B, Schlegel O (1981) Vergleichende Untersuchung von Muskelfasertypen mit der Myosin-ATPase-Reaktion im M. longissimus dorsi von Haus-und Wildschweinen. Dtsch Tierärztl Wschr 88:407–411

    Google Scholar 

  • Webber CL Jr (1979) The structural and functional ofganization of the phrenic motoneuron pool. Am Rev Resp Dis 119:57–60

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szenkuti, L., Bruns, J. Motoneurons of M. semitendinosus in domestic and wild pigs. Anat Embryol 167, 213–228 (1983). https://doi.org/10.1007/BF00298512

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298512

Key words

Navigation